The thermal performance of a flat-plate solar collector (FPSC) using novel heat transfer fluids of aqueous colloidal dispersions of covalently functionalized multi-walled carbon nanotubes with β-Alanine (Ala-MWCNTs) has been studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and (20–30 nm) having specific surface areas (SSAs) of (500 m2/g) and (110 m2/g), respectively, were utilized. For each Ala-MWCNTs, waterbased nanofluids were synthesized using weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1%. A MATLAB code was built and a test rig was designed and developed. Heat flux intensities of 600, 800, and 1000 W/m2; mass flow rates of 0.6, 1.0, and 1.4 kg/min; and inlet fluid temperatures of 30, 40, and 50°C were used to perform the test runs. Using water and nanofluids, the efficiency of the FPSC was found to increase with the increase in heat flux intensity and flow rate, and decrease with the increase in inlet fluid temperature. When applying nanofluids in the FPSC and as weight concentration and SSA increased, a reduction in the values of absorber plate temperature (AP) and tube wall temperature (TW) was observed down to 2.86% and 3.03%, respectively, while the FPSC’s efficiency increased up to 9.55% for 0.1-wt% Ala-MWCNTs < 8 nm at 1.4 kg/min, compared with water. Good agreement was obtained between the experimental values and MATLAB code predictions for AP, TW, and efficiency with maximum differences of 3.02%, 3.19%, and 3.26% for water, and 4.24%, 3.94%, and 12.64% for nanofluids, respectively. Consequently, the MATLAB code was judged suitable for modeling the nanofluid-based FPSC with suitable precision. It was proved that the positive effects of using nanofluids in the FPSC were higher their negative effects on pressure drop because all the calculated values of performance index (PI) were more than 1. As weight concentration and SSA increased, PI increased up to 1.095 for 0.1-wt% Ala-MWCNTs < 8 nm. Therefore, it was concluded that the nanofluids considered in this research can usefully be employed as working fluids in FPSCs for improved thermal performance, and the 0.1-wt% water-based Ala-MWCNTs < 8 nm nanofluid was fairly the distinguished one.
Finding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith
... Show MoreA preventing shield for neutrons and gamma rays was designed using alternate layers of water and iron with pre-fixed dimensions in order to study the possibility of attenuating both neutrons and gamma-rays. ANISN CODE was prepared and adapted for the shield calculation using radiation doses calculation: Two groups of cross-section were used for each of neutrons and gamma-rays that rely on the one – dimensional transport equation using discrete ordinate's method, and through transforming cross-section values to values that are independent on the number of groups. The memory size required for the applied code was reduced and the results obtained were in agreement with those of standard acceptable document samples of cross –section, this a
... Show MoreBackground: Esthetic correction represents one of the clinical conditions that required the use of laminate veneers in premolars region. Aim of the study: The purpose of this study was to evaluate the fracture strength of the laminate veneers in maxillary first premolars, fabricated from either composite (direct and indirect techniques) or ceramic CAD/CAM blocks. Materials and Methods: Fifty sound human maxillary premolar teeth were used in this in vitro study. Teeth were divided randomly into one control group and four experimental groups of ten teeth each; Group A: Restored with direct composite veneer (Filtek Z250 XT), Group B: Restored with indirect composite veneers (Filtek Z250 XT), Group C: Restored with lithium disilicate ceramic CA
... Show MoreAbstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreA concept of indoor solar illumination is described and simulated. The solar illumination system is composed of a tracking primary reflector, a selective secondary reflector, a visible light guide and a scattering solid glass tube fixture. Each part of the solar illumination system is optically suited and compatible with other parts to realize high efficiency. The simulation is conducted for Baghdad city for a library hall. Two major days over a year are chosen to investigate the illumination system for acceptable visible light level for reading hall. The two days are: summer solstice day and winter solstice day at 8:00 AM and 12:00 PM for each. Research results showed that the design of the solar system is achieved on the base of minimu
... Show MoreThe aim of this work was to capture solar radiation and convert it into solar thermal energy by using a storage material and the heat transfer fluid like oil and water and comparison between them, we used the evacuated tube as a receiver for solar radiation, The results showed that the oil better than water as storage material and the heat transfer fluid and the effective thermal conductivity material and good for power level, rates and durations of charge and discharge cycles.
Arrested precipitation methode used to synthesize CuInSe2 (CIS) nanocrystals were added to a hot solvent with organic capping ligands to control nanocrystal formation and growth. CIS thin films deposited onto Soda-Lima Glass (SLG) substrate by spray-coat, then selenized in Ar-atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as-deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illuminations. (XRD) and (EDX) it is evident that CIS have chalcopyrite structure as the major phase with a preferred orientation along (112) direction and Cu:In:Se nanocrystals is nearly 1:1:2 atomic ratio.