The thermal performance of a flat-plate solar collector (FPSC) using novel heat transfer fluids of aqueous colloidal dispersions of covalently functionalized multi-walled carbon nanotubes with β-Alanine (Ala-MWCNTs) has been studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and (20–30 nm) having specific surface areas (SSAs) of (500 m2/g) and (110 m2/g), respectively, were utilized. For each Ala-MWCNTs, waterbased nanofluids were synthesized using weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1%. A MATLAB code was built and a test rig was designed and developed. Heat flux intensities of 600, 800, and 1000 W/m2; mass flow rates of 0.6, 1.0, and 1.4 kg/min; and inlet fluid temperatures of 30, 40, and 50°C were used to perform the test runs. Using water and nanofluids, the efficiency of the FPSC was found to increase with the increase in heat flux intensity and flow rate, and decrease with the increase in inlet fluid temperature. When applying nanofluids in the FPSC and as weight concentration and SSA increased, a reduction in the values of absorber plate temperature (AP) and tube wall temperature (TW) was observed down to 2.86% and 3.03%, respectively, while the FPSC’s efficiency increased up to 9.55% for 0.1-wt% Ala-MWCNTs < 8 nm at 1.4 kg/min, compared with water. Good agreement was obtained between the experimental values and MATLAB code predictions for AP, TW, and efficiency with maximum differences of 3.02%, 3.19%, and 3.26% for water, and 4.24%, 3.94%, and 12.64% for nanofluids, respectively. Consequently, the MATLAB code was judged suitable for modeling the nanofluid-based FPSC with suitable precision. It was proved that the positive effects of using nanofluids in the FPSC were higher their negative effects on pressure drop because all the calculated values of performance index (PI) were more than 1. As weight concentration and SSA increased, PI increased up to 1.095 for 0.1-wt% Ala-MWCNTs < 8 nm. Therefore, it was concluded that the nanofluids considered in this research can usefully be employed as working fluids in FPSCs for improved thermal performance, and the 0.1-wt% water-based Ala-MWCNTs < 8 nm nanofluid was fairly the distinguished one.
A nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the
... Show MoreThis study aims to design unified electronic information system to manage students attendance in Lebanese French university/Erbil, as a system that simplifies the process of entering and counting the students absence, and generate absence reports to expel students who passed the acceptable limit of being absent, and by that we can replace the traditional way of using papers to count absence, with a complete electronically system for managing students attendance, in a way that makes the results accurate and unchangeable by the students.
In order to achieve the study's objectives, we designed an information syst
... Show MoreThis research work aims to the determination of molybdenum (VI) ion via the formation of peroxy molybdenum compounds which has red-brown colour with absorbance wave length at 455nm for the system of ammonia solution-hydrogen peroxide-molybdenum (VI) using a completely newly developed microphotometer based on the ON-Line measurement. Variation of responses expressed in millivolt. A correlation coefficient of 0.9925 for the range of 2.5-150 ?g.ml-1 with percentage linearity of 98.50%. A detection limit of 0.25 ?g.ml-1 was obtained. All physical and chemical variable were optimized interferences of cation and anion were studied classical method of measurement were done and compared well with newly on-line measurements. Application for the use
... Show MoreThis research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.
The aim of the present research is to study different protein fractions in sera of children and adolescent with β –thalassemia major and minor and to compare the results with that of healthy control.One hundred fifty children and adolescents were enrolled in this study,including 50 patients with β- thalassemia major , 50 patients with β- thalassemia minor as pathological control group and another apparently 50 healthy individuals as a control group. The age of all studied groups ranged from (4-18)years.Total protein, albumin and immunoglobulins were estimated in sera of all subjects. A Significant decrease was found in the total protein and albumin&nb
... Show MoreIt is believed that Organizations around the world should be prepared for the transition to IPv6 and make sure they have the " know how" to be able to succeed in choosing the right migration to start time. This paper focuses on the transition to IPv6 mechanisms. Also, this paper proposes and tests a deployment of IPv6 prototype within the intranet of the University of Baghdad (BUniv) using virtualization software. Also, it deals with security issues, improvements and extensions of IPv6 network using firewalls, Virtual Private Network ( VPN), Access list ( ACLs). Finally, the performance of the obtainable intrusion detection model is assessed and compared with three approaches.
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
Background : It had been indentified by histological, histochemical and morphometrical studies that peganum harmala is a mammogenic herb and borage officinalis is a lactogenic one . To complete our investigation about these two herbs , we performed electron microscopical study . Materials and methods : Rats were grouped according to their physiological status into three groups . Each group was subdivided in to three subgroups : one control and two experimental . The two experimental group were treated daily; the 1st one with an aqueous extract of peganum harmala seeds and the 2nd with an aqueous extract of borage officinalis flowers . After two weeks of treatment , mammary glands were employed for electron microscopical study . Resu
... Show MoreThis paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.