This investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for this research. Two types of copper foam sheets with different pore densities, specifically 10 PPI and 40 PPI, were used as absorber plates. The novel solar air heater was compared with a conventional solar air heater equipped with a flat absorber plate based on thermal performance. The effects of the mass flow rate, the air gap of the solar collector, and solar irradiation were examined on various parameters, including the outlet air temperature, solar collector efficiency, and pressure drop across the solar collectors. The results demonstrated that the double-pass solar air heater equipped with a 10 PPI porous absorber plate exhibited superior thermal performance compared to both the double-pass solar air heater with a 40 PPI absorber plate and the conventional absorber plates. Consequently, it can be considered suitable for drying applications. Furthermore, a comparison of the experimental findings with the results obtained from previous studies showed a good agreement.
The overlap between science and knowledge is a feature of the 21st century. This integration, which crosses the traditional boundaries between academic disciplines, has occurred because of the emergence of new needs and new professions. This overlap has overshadowed the arts in general and design in particular. The Design achievements have not been far away from the attempts of integration of more than one type or design application to produce new outputs unique in its functional and aesthetic character, including the terms of internal graphic design.
The researcher raises the question of the functional dimension of graphic design in the internal space, in order to answer it through the methodological framework, which includes th
... Show MoreWe have investigated the photoemission and electronic properties at the PTCDI molecules interface on TiO2 and ZnO semiconductor by means of charge transition. A simple donor acceptor scenario used to calculate the rate for electron transfer of delocalized electronics in a non-degenerately TiO2 and ZnO electrodes to redox localized acceptors in an electrolytic. The dependent of electronic transition rate on the potential at contact of PTCDI with TiO2 and ZnO semiconductors, it has been discussion using TiO2 and ZnO electrodes in aqueous solutions. The charge transfer rate is determining by the overlapping electronic coupling to the TiO2 and ZnO electrodes, the transition energy, potential and polarity media within the theoretical scenario of
... Show MoreThis paper presents an experimental study of cooling photovoltaic (PV) panels using evaporative cooling. Underground (geothermal energy) water used to extract heat from it during cooling and cleaning of PV panels. An experimental test rig was constructed and tested under hot and dusty climate conditions in Baghdad. An active cooling system was used with auxiliary an underground water tank to provide cold water as a coolant over both PV surfaces to reduce its temperature. The cellulose pad has been arranged on the back surface and sprays cooling on the front side. Two identical PV panels modules used: without cooling and evaporative water cooling. The experiments are comprised of four cases: Case (I): backside cooling, Ca
... Show MoreAbstract Background: Dne of the key component of nasal tipplasty is effecter control of naral tip projection. Several cartilage grafts have been decreased for this purpose each had its own advantage and disadvantage. Aim: To evaluate using of double teostrut graft for controlling of tip projection. Patients and Methods: A total number of 170 patients were subjected to primary and secondary rhino plaster between January 2020 to January 2023. Those patients had double Teostrut banner graft for support of their nasal tip and maintaining tip projection after operation. Results: The follow period was ranging between 6-12 months. The shape of the nose was evaluating by patents vernal analogues scale. The average score for patients satisfaction wa
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreFabrication of porous clay refractory insulating specimens from Iraqi kaolin with different percentage of Expanded Polystyrene (EPS) waste crumbs additions were investigated. After mixing and forming by hand molding, the specimens was dried and fired at 1300 oC. The structural, physical, mechanical and thermal properties of the refractory insulating products were measured. Maximum addition of EPS (1.25 wt%) lead to reduce the linear shrinkage to less than 1.7% and increased apparent porosity up to 50 %. As well as, the density, Modulus of rupture and thermal conductivity were reduced to 1.39 g/cm3, 4.1 MPa and 0.21 W/m.K, respectively. The final outcome, addition of EPS showed good results in the formation of pores without distorting the
... Show MoreColloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t
... Show MoreThe structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.
Fabrication of solar cell prepared by thermal spray and vacuum thermal evaporation method on silicon wafer(n-type) and studying its efficiency. The film have been deposited on three layers(ZnO then CdS and CdTe) on Si and glass respectively.Direct energy gap was calculated and equal to (4.3,3.4,3)eV and indirect energy gap equal to (3.5,2.5,1.5)eV respectively . Efficiency was calculated for the cell of area 2cm2 it was equal to 0.14%.
Abstract. Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta=400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta=400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization , the photovoltaic parameters such as, open-circuit voltage, short
... Show More