This investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for this research. Two types of copper foam sheets with different pore densities, specifically 10 PPI and 40 PPI, were used as absorber plates. The novel solar air heater was compared with a conventional solar air heater equipped with a flat absorber plate based on thermal performance. The effects of the mass flow rate, the air gap of the solar collector, and solar irradiation were examined on various parameters, including the outlet air temperature, solar collector efficiency, and pressure drop across the solar collectors. The results demonstrated that the double-pass solar air heater equipped with a 10 PPI porous absorber plate exhibited superior thermal performance compared to both the double-pass solar air heater with a 40 PPI absorber plate and the conventional absorber plates. Consequently, it can be considered suitable for drying applications. Furthermore, a comparison of the experimental findings with the results obtained from previous studies showed a good agreement.
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreIn this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air i
... Show MoreThis research aims to introduce a new technique-off-site and self-form segmental concrete masonry arches fabrication, without the need of construction formwork or centering. The innovative construction method in the current study encompasses two construction materials forms the self-form masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP) composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the extrados of the arch rings under service loadings. An experimental test was conducted on four sophisticated masonry arch specimens. The research parameters were the Keystone thic
... Show MoreMixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical
... Show MoreThe present paper deals with experimental investigation of the performance of air cooled split air conditioner, with evaporative water mist pre cooling to increase the cooling capacity and reduce the consumption power under hot and dry climate. This investigation considers how the performance can be enhanced by using water mist to pre-cool ambient air entering the condensers by adiabatic cooling process which depends on the ambient air wet bulb temperature; as well the condensing temperature and condensing pressure will be decreased accordingly. So the cooling capacity would be increased and consumption power would be decreased, consequently the energy ratio, EER would be improved. The performance of air cooled air conditioner with water
... Show MoreAbstract A description study was carried through out the present study aimed to assess health education provided by nurses to patient with gall stone "obstructive jaundice". The study was conducted at 4 teaching hospital, Baghdad teaching hospital, Al-Karama teaching hospital, Al-Yarmook teaching hospital, Al-Kendy teaching hospital where choloecystectomy was performed, in the period from first of June 2004 to end of July 2004. Data were collected through the use of questionnaire an interview from which was developed for the purpose of the present study. A non-probability (purposive) sample which was consist
In this work, the effect of vortex shedding on the solar collector performance of the parabolic trough solar collector (PTSC) was estimated experimentally. The effect of structure oscillations due to wind vortex shedding on solar collector performance degradation was estimated. The performance of PTSC is evaluated by using the useful heat gain and the thermal instantaneous efficiency. Experimental work to simulate the vortex shedding excitation was done. The useful heat gain and the thermal efficiency of the parabolic trough collector were calculated from experimental measurements with and without vortex loading. The prototype of the collector was fabricated for this purpose. The effect of vortex shedding at different operation condition
... Show MoreIn this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show More