Symmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a randomly predefined set of key numbers of size n via the Donald E. Knuths SRNG algorithm (subtractive method). The second phase uses the output key (or seed value) from the previous phase as input to the Latin square matrix (LSM) to formulate a new key randomly. To increase the complexity of the generated key, another new random key of the same length that fulfills Shannon’s principle of confusion and diffusion properties is XORed. Four test keys for each 128, 192,256,512, and 1024–bit length are used to evaluate the strength of the proposed model. The experimental results and security analyses revealed that all test keys met the statistical National Institute of Standards (NIST) standards and had high values for entropy values exceeding 0.98. The key length of the proposed model for n bits is 25*n, which is large enough to overcome brute-force attacks. Moreover, the generated keys are very sensitive to initial values, which increases the complexity against different attacks.
As the banking sector is a strong influence on the country's economic growth,The solid financial well-being of anybank does not mean only a guarantee for its investors, It is also important for both owners and workers and for theeconomy in all its joints.The elements of capital adequacy and quality of assets are important to the functioning of thebanking business.In this study, the research sample included four private banks. Quarterly data were used for the period(2011 - 2018).Moreover, data is also collected from articles, papers, the World Wide Web (the Internet) and specializedinternational journals.In this research, an effort was made to try to find out the effect of (the ratio of the capital owned todeposits on the value of the bank),
... Show MoreExperimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
Linear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust
... Show MoreThe synthesis, characterization and mesomorphic properties of two new series of triazine-core based liquid crystals have been investigated. The amino triazine derivatives were characterized by elemental analysis, Fourier transforms infrared (FTIR), 1HNMR and mass spectroscopy. The liquid crystalline properties of these compounds were examined by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). DSC and POM confirmed nematic (N) and columnar mesophase textures of the materials. The formation of mesomorphic properties was found to be dependent on the number of methylene unit in alkoxy side chains.
Face recognition and identity verification are now critical components of current security and verification technology. The main objective of this review is to identify the most important deep learning techniques that have contributed to the improvement in the accuracy and reliability of facial recognition systems, as well as highlighting existing problems and potential future research areas. An extensive literature review was conducted with the assistance of leading scientific databases such as IEEE Xplore, ScienceDirect, and SpringerLink and covered studies from the period 2015 to 2024. The studies of interest were related to the application of deep neural networks, i.e., CNN, Siamese, and Transformer-based models, in face recogni
... Show More