Background: the aim of this study was to assess the 2-year pulp survival of deep carious lesions in teeth excavated using a self-limiting protocol in a single-blind randomized controlled clinical trial. Methods: At baseline, 101 teeth with deep carious lesions in 86 patients were excavated randomly using self-limiting or control protocols. Standardized clinical examination and periapical radiographs of teeth were performed after 1- and 2-year follow-ups (REC 14/LO/0880). Results: During the 2-year period of the study, 24 teeth failed (16 and 8 at T12 and T24, respectively). Final analysis shows that 39/63 (61.9%) of teeth were deemed successful (16/33 (48.4%) and 23/30 (76.6%) in the control and experimental groups, respectively with a statistically significant difference (z score = 2.3, p = 0.021). Of teeth with severe and mild symptoms at T0, 42.9% and 36.7% respectively failed at T24 (p > 0.05). Within the self-limiting group, there was a lower success in premolars compared to molars (p < 0.05). Conclusion: after 2 years, there was a statistically significant higher pulp survival rate of teeth with deep carious lesions excavated using self-limiting protocols in patients with reversible pulpitis. Molars showed higher success than premolars in teeth excavated using the self-limiting protocol. There was no statistically significant association between the outcome and the severity of symptoms at T0 (ClinicalTrials.gov NCT03071588).
Some Results on Fuzzy Zariski
Topology on Spec(J.L)
This research aims to present some results for conceptions of quasi -hyponormal operator defined on Hilbert space . Signified by the -operator, together with some significant characteristics of this operator and various theorems pertaining to this operator are discussed, as well as, we discussed the null space and range of these kinds of operators.
In this work , we study different chaotic properties of the product space on a one-step shift of a finite type, as well as other spaces. We prove that the product is Lyapunove –unstable if and only if at least one or is Lyapunove –unstable. Also, we show that and locally everywhere onto (l.e.o) if and only if is locally everywhere onto (l.e.o) .
In projective plane over a finite field q F , a conic is the unique complete
(q 1) arc and any arcs on a conic are incomplete arc of degree less than q 1.
These arcs correspond to sets in the projective line over the same field. In this paper,
The number of inequivalent incomplete k arcs; k 5,6, ,12, on the conic in
PG(2,23) and stabilizer group types are found. Also, the projective line
PG(1,23) has been splitting into two 12-sets and partitioned into six disjoint
tetrads.
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
The significance of the work is to introduce the new class of open sets, which is said Ǥ- -open set with some of properties. Then clarify how to calculate the boundary area for these sets using the upper and lower approximation and obtain the best accuracy.
Background: Achalasia is an uncommon but not a rare a malady. In Iraq, we lack true statistics about this condition.
Objective: is to review the experience with trans-thoracic modified Heller operation for achalasia cardia in a major thoracic surgical centre in Iraq over a 4-year period.
Study design: a combined retrospective and prospective study.
Setting: Department of Thoracic Surgery in Baghdad Medical City/Baghdad/Iraq.
Methods: This study is both retrospective (20 cases) and prospective (20 cases); the information is collected from either patients, case sheets or obtained directly from patients, interviews. In both situa
... Show More