Background: the aim of this study was to assess the 2-year pulp survival of deep carious lesions in teeth excavated using a self-limiting protocol in a single-blind randomized controlled clinical trial. Methods: At baseline, 101 teeth with deep carious lesions in 86 patients were excavated randomly using self-limiting or control protocols. Standardized clinical examination and periapical radiographs of teeth were performed after 1- and 2-year follow-ups (REC 14/LO/0880). Results: During the 2-year period of the study, 24 teeth failed (16 and 8 at T12 and T24, respectively). Final analysis shows that 39/63 (61.9%) of teeth were deemed successful (16/33 (48.4%) and 23/30 (76.6%) in the control and experimental groups, respectively with a statistically significant difference (z score = 2.3, p = 0.021). Of teeth with severe and mild symptoms at T0, 42.9% and 36.7% respectively failed at T24 (p > 0.05). Within the self-limiting group, there was a lower success in premolars compared to molars (p < 0.05). Conclusion: after 2 years, there was a statistically significant higher pulp survival rate of teeth with deep carious lesions excavated using self-limiting protocols in patients with reversible pulpitis. Molars showed higher success than premolars in teeth excavated using the self-limiting protocol. There was no statistically significant association between the outcome and the severity of symptoms at T0 (ClinicalTrials.gov NCT03071588).
The study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show More
The removal of SO2 from simulated gas stream (SO2 + air) in a fixed bed reactor using Modified Activated Carbon (MAC) catalysts was investigated. All the experiments were conducted at atmospheric pressure, initial SO2 concentration of 2500 ppm and bed temperature of 90oC. MAC was prepared by loading a series of nickel and copper oxides 1, 3, 5, 7, and 10 w
... Show MoreSchiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show MoreBackground: Osteoporosis (OP) is a systemic disease characterized by low bone mass and micro architectural deterioration of bone tissue, resulting in an increased risk of fractures and has touched rampant proportions. Osteocalcin, one of the osteoblast-specific proteins, showed that its functions as a hormone improves glucose metabolism and reduces fat mass ratio. This study is aimed to estimate the osteocalcin and glucose level in blood serum of osteoporotic postmenopausal Women with and without Type 2 Diabetes.Materials and methods: 60 postmenopausal women with osteoporosis divided into two groups depending on with or without T2DM, 30 patients for each. Serum samples of 30 healthy postmenopausal women were collected as control group. Ost
... Show More