The plant occupied the largest area in the biosynthesis of silver nanoparticles, especially the medicinal plants, and it has shown great potential in biotechnology applications. In this study, green synthesis of silver nanoparticles from Moringa oleifera leaves extract and its antifungal and antitumor activities were investigated. The formation of silver nanoparticles was observed after 1 hour of preparation color changing. The ultraviolet and visible spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize synthesis particles. Ultraviolet and visible spectroscopy showed a silver surface plasmon resonance band at 434 nm. Fourier transform infrared analysis shows the possible interactions between silver and bioactive molecules in Moringa oleifera leaves extracts, which may be responsible for the synthesis and stabilization of silver nanoparticles. X-ray diffraction showed that the particles were a semicubic crystal structure and with a size of 38.495 nm. Scanning electron microscopy imaging shows that the atoms are spherical in shape and the average size is 17 nm. The transmission electron microscopy image demonstrated that AgNPs were spherical and semispherical particles with an average of (50–60) nm. The nanoparticles also showed potent antimicrobial activity against pathogenic bacteria and fungi using the well diffusion method. Candida glabrata found that the concentration of 1000 μg/mL exhibited the highest inhibition. As for bacteria, the concentration of 1000 μg/mL appeared to be the inhibition against Staphylococcus aureus. Moringa oleifera AgNPs inhibited human melanoma cells A375 line significant concentration-dependent cytotoxic effects. The powerful bioactivity of the green synthesized silver nanoparticles from medical plants recommends their biomedical use as antimicrobial as well as cytotoxic agents.
Biosynthesis of nanoparticles has received considerable attention due to the growing need to develop environmentally benign nanoparticle synthesis processes that do not use toxic chemicals. Therefore, biosynthetic methods employing both biological agents such as bacteria and fungus or plant extracts have emerged as a simple and a viable alternative to chemical synthetic and physical method .It is well known that many microbes produce an organic material either intracellular or extracellular which is playing important role in the remediation of toxic metals through reduction of metal ions and acting as interesting Nano factories. As a result, in the present study Ag NPs were syn
... Show MoreBackground: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa
... Show MoreThis experiment was conducted to study the effect of injecting hatching eggs into a flock of broiler aged mothers with different concentrations of the alcoholic extract of Moringa oleifera powder on productive performance of broilers during the period of rearing of 35 days. The study included two experiments for a period at 2/10/2021 to 28/11/2021, where eggs were injected into the Mustafa Poultry Hatchery/ Wasit Governorate- Aziziyah District. A 400 hatching eggs of 308 Ross mothers of modern broilers used at age of 48 week, eggs of average weight 66 ± 1 g/egg were collected in same day then stored for two days. A quarter of treatments were randomly distributed with 100 eggs for each treatment.
... Show MoreAbstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreA Schiff base ligand (L) was synthesized via condensation of
Background: The emergence and spread of multidrug-resistant Gram-negative bacilliin burn wound infections related to biofilm formation, which lend to challenge in treatment with conventional antibiotics andprompting to search for novel antimicrobial agents to control the infections.Silver nanoparticles (AgNPs) have wide spectrum biological properties with different mechanisms of action and less toxicity towards human cells.
Objective:The goal of this study was to evaluated the anti-bacterial and anti-biofilm activities of AgNPs alone and in combination with aminoglycoside (Amikacin) and β-lactam (Ampicillin) antibiotics against multidrug resistant Gram-negative bacilli (Pseudomonas aeruginos
... Show MoreThe aim of the current research is to study the effect of adding green tea to the edible film prepared from the whey protein isolate on the effectiveness of microorganisms and evaluating the of antimicrobial effectiveness of these films on Iraqi soft cheese packaging during the nine days of storage as an alternative to commercial packaging. At the beginning of the study, the minimum inhibitory concentration was measured by calculate the diameter of the zone of inhibition on growth of the bacteria and it's included the group of Gram negative bacteria (Escherichia coli, Salmonella spp, Pseudomonas Aeruginosa) and the group of Gram positive bacteria (Staphylococcus Aureus, Bacillus spp) and a yeast (Candida Albican). Where the diameter of t
... Show More