The plant occupied the largest area in the biosynthesis of silver nanoparticles, especially the medicinal plants, and it has shown great potential in biotechnology applications. In this study, green synthesis of silver nanoparticles from Moringa oleifera leaves extract and its antifungal and antitumor activities were investigated. The formation of silver nanoparticles was observed after 1 hour of preparation color changing. The ultraviolet and visible spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize synthesis particles. Ultraviolet and visible spectroscopy showed a silver surface plasmon resonance band at 434 nm. Fourier transform infrared analysis shows the possible interactions between silver and bioactive molecules in Moringa oleifera leaves extracts, which may be responsible for the synthesis and stabilization of silver nanoparticles. X-ray diffraction showed that the particles were a semicubic crystal structure and with a size of 38.495 nm. Scanning electron microscopy imaging shows that the atoms are spherical in shape and the average size is 17 nm. The transmission electron microscopy image demonstrated that AgNPs were spherical and semispherical particles with an average of (50–60) nm. The nanoparticles also showed potent antimicrobial activity against pathogenic bacteria and fungi using the well diffusion method. Candida glabrata found that the concentration of 1000 μg/mL exhibited the highest inhibition. As for bacteria, the concentration of 1000 μg/mL appeared to be the inhibition against Staphylococcus aureus. Moringa oleifera AgNPs inhibited human melanoma cells A375 line significant concentration-dependent cytotoxic effects. The powerful bioactivity of the green synthesized silver nanoparticles from medical plants recommends their biomedical use as antimicrobial as well as cytotoxic agents.
The purpose of this research is to prepare new vanillic acid derivatives with 1,2,4-triazole-3-thiol heterocyclic ring and evaluate their antimicrobial activity in a preliminary assessment. A multistep synthesis was established for the preparation of new vanillic acid-triazole conjugates. The intermediate of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-2-methoxyphenol (4) reacts with different heterocyclic aldehydes (thiophene-2-carboxaldehyde, pyrrole-2-carboxaldehyde, thiophene-3-carboxaldehyde, and furfural ) in ethanol containing few drops of acetic acid yielded the corresponding 4-(4-(substituted amino)-5-mercapto-4H-1,2,4-1triazol-3-yl)-2-methoxy phenol derivatives (5-8). These compounds were characterized spectroscopically by
... Show MoreThe purpose of this research is to prepare new vanillic acid derivatives with 1,2,4-triazole-3-thiol heterocyclic ring and evaluate their antimicrobial activity in a preliminary assessment. A multistep synthesis was established for the preparation of new vanillic acid-triazole conjugates. The intermediate of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-2-methoxyphenol (4) reacts with different heterocyclic aldehydes (thiophene-2-carboxaldehyde, pyrrole-2-carboxaldehyde, thiophene-3-carboxaldehyde, and furfural ) in ethanol containing few drops of acetic acid yielded the corresponding 4-(4-(substituted amino)-5-mercapto-4H-1,2,4-1triazol-3-yl)-2-methoxy phenol derivatives (
The central nervous system is the most important system and is very sensitive to any accidental infection during ontogenesis; it includes brain and spinal cord. The cerebellum is the second largest part of the brain after cerebrum and it’s very sensitive to the abnormal changes during the embryological development. This study was designed to investigate the effect of the maternal exposure of selected concentrations of suspension of nanoparticles on the ontogenesis of the rat cerebellum after embryos implanted in uterus. A total of 60 female pregnant rats were divided in to three groups, each contains 20 females. Group1 (G1) was treated orally with 2mg/kg /body weight (b. wt) of suspension of silver nanoparticles (Ag NPs). While group 2 (G
... Show MoreThe work include synthesis of nanocomposites (X / S / Ag) based on blend from Xanthan gum / sodium alginate polymers (X / S) with different loading of synthesized silver nanoparticales (0.01, 0.03 and 0.05 wt%) were added to the blend. The silver nanoparticles were prepared by reduction method and were characterized and analyzed using X-ray diffraction (XRD) and Atomic force microscope (AFM). XRD study showed the presence nanoparticle of silver with crystalline nature and face-centered cubic (FCC) structure and an average size of nanoparticles ranging from 32 to 37 nm. The surface study was performed using AFM which showed a fairly uniform shape to the nanocomposites and a spherical nature for the silver nanoparticles. The nanocomposite exh
... Show MoreIn the present study, the effect of Zinc nanoparticles on levels of (T3 , T4 and TSH) hormones was investigated. Zinc nanoparticles were synthesized by Laser induced plasma.The Nd: YAG Nd: YAG laser with a wavelength of 1064 nm was used to generate nanomaterials of the elements (zinc) upon collision with target atoms. Plasma generated by different laser intensity is generated. After confirming the preparation of zinc nanoparticles, XRD, AFM was examined, and the effect of these substances on the thyroid gland (T3, T4, TSH) was observed for two doses of each component (1 ml / kg, 4 ml / kg) after conducting a cytotoxicity examination of the lymphocytes of the rats extracted from Rat spleen was 1.8% less toxic to zinc, and as noted The
... Show MoreThe Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism
... Show More