This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performance and achieve the desired output. In addition, there is a minimization for the tracking voltage error to zero value of the Buck converter output, especially when changing a load resistance by 10%.
1.
Embryonic Origin of Neural Tube Defects.
Insaf Jasim Mahmoud
2.
Etiology of Neural Tube Defectss.
Ali Abdul Razzak Obed
3.
Epidemiology of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi
4.
Surgical Management of Neural Tube Defects.
Laith Thamer Al-Ameri
5.
Prevention of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi
Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreA study has been done to find the optimum separators pressures of separation stations. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid discharged from a higher pressure separator into the lower pressure separator. The set of working separators pressures which yield maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures which is the target of this work.
Computer model is used to find the optimum separators pressures. The model employs the Peng-Robinson equation of state for volatile oil. Application of this model shows good improvement of al
Research,s Summary The purpose of the research was to specify the standerd Levels for results of basketball for Iraqi young sters, Becuse there werenot the standerd Levels which related to the testings abilities of the players based on plying centers specially the physical abilities, This made weakness in arrangement and putting the suitable training studies for different age stadges which suitable with game ,s requirements, besides evaluation the performance of the plyers in common and the levels of the coachs train in special according to the scientific style. The researchers depended on (8) special testings of chossen physical abilities, These testings applied on the teams, young players for sharing clubs among excellent series of basket
... Show MoreThe control of prostheses and their complexities is one of the greatest challenges limiting wide amputees’ use of upper limb prostheses. The main challenges include the difficulty of extracting signals for controlling the prostheses, limited number of degrees of freedom (DoF), and cost-prohibitive for complex controlling systems. In this study, a real-time hybrid control system, based on electromyography (EMG) and voice commands (VC) is designed to render the prosthesis more dexterous with the ability to accomplish amputee’s daily activities proficiently. The voice and EMG systems were combined in three proposed hybrid strategies, each strategy had different number of movements depending on the combination protocol between voic
... Show More