Slag of aluminum is a residue which results during the melting process of primary and secondary aluminum production. Salt slag of aluminum is hazardous solid waste according to the European Catalogue for Hazardous Wastes. Hence, recovery of aluminum not only saves the environment, but also has advantages of financial and economic returns. In this research, aluminum was recovered and purified from the industrial wastes generated as waste from both of State Company for Electrical and Electronic Industries (Baghdad/AlWaziriya) and General Company for Mechanical Industries (Babylon/-Al-Escandria). It was found that these wastes contain tiny proportions of other elements such as iron, copper, nickel, titanium, lead, and potassium. Wastes were recovered for green sustainability, saving energy and cost effectiveness. The method applied for recovering aluminum was pyro-metallurgical method by smelting and refining. X-Ray fluorescence spectroscopy and X- Ray diffraction techniques of the slag sample were used to determine the chemical analysis and phases, respectively. Melting experiments were conducted by using different types of fluxes (KAlF4, NaCl, KCl and AlCl3) at different percentages (0, 5, 10 %) and different melting temperatures (700, 750, 800oC). Design of Experiment (DOE) by Taguchi method, orthogonal array L9, was used in melting experiments. Melting efficiency of aluminum was equal to 84.7%. Electro-refining of aluminum was done by using anhydrous aluminum chloride and NaCl as ionic liquids at low temperature 100 ◦C in electro-refining method producing aluminum of 99% purity.
The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three i
... Show MoreDiagenetic processes and types of pores that control the reservoir properties are studied for Mauddud Formation in selected wells of Badra oil field, central Iraq. The microscopic study of the thin sections shows the effects of micritization, cementation, neomorphism, dissolution, dolomitization, compaction, and fracturing on Mauddud Formation carbonate microfacies. The decrease of porosity is resulted from cementation, compaction, and neomorphism. Different types of calcite cement occlude pore spaces such as drusy cement, syntaxial rim cement, and granular (blocky) cement. The neomorphism of micritic matrix and skeletal grains reduces porosity as indicated by development of microspar or pseudospar. Evidence of decreasing porosity by com
... Show MoreFriction stir spot welding (FSSW) is a relatively new welding process that may have significant advantages compared to the fusion processes as follows joining of conventionally non-fusion weldable alloys, reduced distortion and improved mechanical properties of weldable alloys joints due to the pure solidstate joining of metals. In this paper, a three-dimensional model based on finite element analysis is used to study the thermal history in the spot-welding of aluminum alloy 2024. The model take place the thermomechanical property on the process of the welded metals. The thermal history and the evolution results with numerical model at the measured point in the friction stirred spot weld have a good matching, then the prediction of the t
... Show MorePower switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin
... Show MoreThe problem of generated waste as a result of the implementation of construction projects, has been aggravated recently because of construction activity experienced by the world, especially Iraq, which is going through a period of reconstruction, where construction waste represents (20-40%) of the total generated waste and has a negative effect on the environment and economic side of the project. In addition, the rate of consumpted amounts of natural resources are estimated to be about 40% in the construction industry, so it became necessary to reduce waste and to be manage well. This study aims to identify the key factors affecting waste management through the various phases of the project, and this is accom
... Show MoreHeat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he
... Show MoreThe monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show MoreRecently new and multiple concepts emerged in the sustainability issues ,which transformed into number of planning and designing policies and strategies that must be committed by the designers and the relevant trends in building ,regarding Iraq and the reality of industrial areas ,especially in Baghdad, which helped to sustain few of it & emerged another with bad reflect ,which for that made it clear the importance of implicating sustainable ecological planning and designing strategies provided by the concept of Eco-industrial parks and the concept of Ecotowns and the future potentials provided ,and the easiness of carrying it out which made it flexible and away to provide a base supported by it for rebuilding and rehabilitation and
... Show MoreThis study investigated the feasibility of anaerobic co-digestion of giant reed (GR) inoculated with waste manure as a co-substrate for biogas production. The performance of co-digestion was evaluated in 4 anaerobic digesters operated in batch mode at different conditions. The effects of alkali pretreatment with NaOH (4% w/v) solution, inoculum type, and thermal condition were studied. The results demonstrated that the alkali-pretreatment of GR enhanced the biogas generation by about 15% at mesophilic conditions. Thermophilic conditions enhanced the biogas recovery from both alkali-free and alkali pretreated GR by 15% and 127%, respectively. The kinetic study of the co-digestion process of GR for biogas recovery suggeste
... Show More