Preferred Language
Articles
/
alkej-87
Experimental and Simulation investigations of Micro Flexible Deep Drawing Using Floating Ring Technique
...Show More Authors

Micro metal forming has an application potential in different industrial fields. Flexible tool-assisted sheet metal forming at micro scale is among the forming techniques that have increasingly attracted wide attention of researchers. This forming process is a suitable technique for producing micro components because of its inexpensive process, high quality products and relatively high production rate. This study presents a novel micro deep drawing technique through using floating ring as an assistant die with flexible pad as a main die. The floating ring designed with specified geometry is located between the process workpiece and the rubber pad. The function of the floating ring in this work is to produce SS304 micro cups with profile radius precision as required as possible. The finite element simulations are accomplished using the commercial code Abaqus/Standard. In order to verify the simulation models, micro deep drawing experiments are carried out using a special set up developed specifically to meet the requirements of the simulations. The results revealed that the proposed technique is feasible to be adopted for producing micro cups with remarkable application capability in miniaturization technology.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Experimental Evaluation Use of Semifluidized Bed Adsorber for the Treatment of P-chlorophenol and O-cresol in Wastewater using Activated Carbon as Adsorbent
...Show More Authors

In the present work the performance of semifluidized bed adsorber was evaluated for removal of phenolic compound from wastewater using commercial activated carbon as adsorbent. P-chlorophenol (4-Chlorophenol) and o-cresol (2-methylphenol) was selected as a phenolic compound for that purpose. The phenols percent removal, in term of breakthrough curves were studied as affected by hydrodynamics limitations which include minimum and maximum semifluidization velocities and packed bed formation in the column by varying various parameters such as inlet liquid superficial velocity (from Uminsf to 8Uminsf m/s), and retaining grid (sometimes referred to as adsorbent loading) to initial static bed height ratio (from 3-4.5). In

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Lorenz model and chaos masking /addition technique
...Show More Authors

View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Iraqi Journal Of Physics
Investigation of Numerical Simulation for Adaptive Optics System
...Show More Authors

In this study, the performance of the adaptive optics (AO) system was analyzed through a numerical computer simulation implemented in MATLAB. Making a phase screen involved turning computer-generated random numbers into two-dimensional arrays of phase values on a sample point grid with matching statistics. Von Karman turbulence was created depending on the power spectral density. Several simulated point spread functions (PSFs) and modulation transfer functions (MTFs) for different values of the Fried coherent diameter (ro) were used to show how rough the atmosphere was. To evaluate the effectiveness of the optical system (telescope), the Strehl ratio (S) was computed. The compensation procedure for an AO syst

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Simulation of naturally Fractured Reservoirs with SimBest ll
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Jun 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Steady State Simulation of Atmospheric Crude Distillation Tower
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Oct 31 2012
Journal Name
Enzyme Research
Simulation of Enzyme Catalysis in Calcium Alginate Beads
...Show More Authors

A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized α-amylase were used as a model for this study. Corn starch hydrolysis was carried out at a constant pH of 5.5 and temperature of . The substrate flow rate was ranging from 0.2 to 5.0 mL/min, substrate initial concentrations 1 to 100 g/L. α-amylase was immobilized on to calcium alginate hydrogel beads of 2 mm average diameter. In this work Michaelis-Menten kinetics have been considered. The effect of substrate flow rate (i.e., residence time

... Show More
View Publication
Scopus (14)
Crossref (16)
Scopus Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (39)
Crossref (32)
Scopus Clarivate Crossref