In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test AVSS systems. In its basic form, this review aims to highlight the growing importance of AVSS in improving the quality of audio signals.
— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen
... Show MoreThe estimation of quantity of liquid that is collected from gas/oil separation system is a very complex task because it requires the application of the flash calculations which needs to solve the cubic equation of state and to use some numerical techniques. These difficulties can be overcome by a computer model which requires a lot of experimental data, long time, and experience.
This paper adopts a new technique to simplify this problem. It suggests new correlations for optimum separator pressure for separation station of heavy oils. The correlations have been achieved for two- and three- stage separation systems.
The co
importumt educational institution as (kindergartens) need teachers which qualified ownes modalities in their education for children , as Marzanu method in a way of learning and own methods of crisis management, because the teachers that own those styles of learning ginekindergarten children knowledge and the childrenIeaving based on theMeaing and knowledge and integration of their information, And teachers that earn methods of crisis management provide for the children of the kindergarten security within the educational institution which in turn affect the growth and development of the Child and then abilities, health physical, mental, psychological …etc.., The aims of the current research have identified to recognize: 1- the dimension
... Show MoreA liquid-solid chromatography of Bovine Serum Albumin (BSA) on (diethylaminoethyl-cellulose) DEAE-cellulose adsorbent is worked experimentally, to study the effect of changing the influent concentration of (0.125, 0.25, 0.5, and 1 mg/ml) at constant volumetric flow rate Q=1ml/min. And the effect of changing the volumetric flow rate (1, 3, 5, and 10 ml/min) at constant influent concentration of Co=0.125mg/ml. By using a glass column of (1.5cm) I.D and (50cm) length, packed with adsorbent of DEAE-cellulose of height (7cm). The influent is introduced in to the column using peristaltic pump and the effluent concentration is investigated using UV-spectrophotometer at 30oC and 280nm wavelength. A spread (steeper) break-through curve is gained
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreAbstract
Objective(s): To evaluate blended learning in nursing education at the Middle Region in Iraq.
Methodology: A descriptive study, using evaluation approach, is conducted to evaluate blended learning in nursing education in Middle Region in Iraq from September 26th, 2021 to March 22nd, 2022. The study is carried out at two Colleges of Nursing at the University of Baghdad and University of Tikrit in Iraq. A convenient, non-probability, sample of (60) undergraduate nursing students is selected. The sample is comprised of (30) student from each college of nursing, Self-report questionnaire is constructed from the literature, for e
... Show MoreGuanine has a variety of roles in chemistry, from its basic function in the storing and transferring genetic information to its usages in synthetic chemistry and other fields. Because of its distinct structure and biological importance, it is a fundamental component of contemporary study in organic chemistry and molecular biology. In this review, we focused on covering the synthetic pathways of various derivatives of guanine from the year 2000 until the present. As a result of the guanine molecule containing multiple functional groups, this gives us the ability to prepare several guanines such as O6-alkylating guanines, O6-benzylguanines, 8-aza-O6-benzylguanines, 9-substituted guanines, guanine-azo derivatives, guanine Schiff bases, guanin
... Show More