Preferred Language
Articles
/
alkej-869
PDF Comparison based on Various FSO Channel Models under Different Atmospheric Turbulence
...Show More Authors

Recently, wireless communication environments with high speeds and low complexity have become increasingly essential. Free-space optics (FSO) has emerged as a promising solution for providing direct connections between devices in such high-spectrum wireless setups. However, FSO communications are susceptible to weather-induced signal fluctuations, leading to fading and signal weakness at the receiver. To mitigate the effects of these challenges, several mathematical models have been proposed to describe the transition from weak to strong atmospheric turbulence, including Rayleigh, lognormal, Málaga, Nakagami-m, K-distribution, Weibull, Negative-Exponential, Inverse-Gaussian, G-G, and Fisher-Snedecor F distributions. This paper extensively studies and analyses different probability density functions (PDFs) that govern the FSO channel, considering various channel models. This paper aims to comprehensively understand how FSO channels can be effectively modeled using different PDFs. Accurate modeling is crucial for designing FSO systems that can operate optimally under potential environmental conditions. Selecting the appropriate PDF model plays a crucial role in determining the FSO channel's performance during system design. With a multitude of PDF models available, this study aims to identify the most effective PDF model to be employed in FSO channel modeling.

 

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Regression Models Estimation for the poverty Rates In the districts of Iraq in 2012
...Show More Authors

The research took the spatial autoregressive model: SAR and spatial error model: SEM  in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Total Dissolved Salt Prediction Using Neurocomputing Models: Case Study of Gypsum Soil Within Iraq Region
...Show More Authors

View Publication
Scopus (14)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Performance Evaluation of Al-Karkh Water Treatment Plant Using Model-driven and Data-Driven Models
...Show More Authors
Abstract<p>There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn</p> ... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
The use of ARIMA, ANN and SVR models in time series hybridization with practical application
...Show More Authors

Forecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Dumping and Its Challenges in Extent of World Trade Organization "Models for selected Agricultural Goods"
...Show More Authors

The subject of dumping is considering today one of the subjects in which form an obstruction arise in front of the cycle of growth for some countries , such as the study of dumping is capturing a large attention by the competent because either a big  role and effect in growing the economies of nations then the subject of dumping became a field turn around its sides many measures and laws … and may be done resorting to by many states of the world to anti-dumping as approach of determent weapon delimit  the impact of dumping and gives the national agriculture sector the opportunity for rising and growing so this section of international economics is capturing a special importance and represent in same time an important

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
The use of ARIMA, LSTM and GRU models in time series hybridization with practical application
...Show More Authors

The importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data
...Show More Authors

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 21 2024
Journal Name
Edelweiss Applied Science And Technology
Using count regression models to investigate the most important economic factors affecting divorce in Iraq
...Show More Authors

The two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
International Journal Of Engineering
Esterification Reaction Kinetics Using Ion Exchange Resin Catalyst by Pseudo-Homogenous and Eley-Ridel Models
...Show More Authors

This work deals with kinetics and chemical equilibrium studies of esterification reaction of ethanol with acetic acid. The esterification reaction was catalyzed by an acidic ion exchange resin (Amberlyst- 15) using a batch stirred tank reactor. The pseudo-homogenous and Eley-Rideal models were successfully fitted with experimental data. At first, Eley-Rideal model was examined for heterogeneous esterification of acetic acid and ethanol. The pseudo-homogenous model was investigated with a power-law model. The apparent reaction order was determined to be (0.88) for Ethanol and (0.92) for acetic acid with a correlation coefficient (R2) of 0.981 and 0.988, respectively. The reaction order was determined to be 4.1087x10-3 L0.8/(mol0.8.min) with

... Show More
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 31 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Measurement and accounting disclosure of intellectual capital using accounting models in the Iraqi insurance company
...Show More Authors

The research aims to shed light on the possibility of measuring the intellectual capital in the Iraqi insurance company using accounting models, as well as disclosing it in the financial statements of the company, where human capital was measured using the present value factor model for discounted future revenues and the intellectual value-added factor model for measuring structural capital It was also disclosed in the financial statements based on the theory of stakeholders. The research problem lies in the fact that the Iraqi insurance company does not carry out the process of measuring and disclosing the intellectual capital while it is considered an important source for the company’s progress in the labor market recently. T

... Show More
View Publication Preview PDF