An impressed current cathodic protection system (ICCP) requires measurements of extremely low-level quantities of its electrical characteristics. The current experimental work utilized the Adafruit INA219 sensor module for acquiring the values for voltage, current, and power of a default load, which consumes quite low power and simulates an ICCP system. The main problem is the adaptation of the INA219 sensor to the LabVIEW environment due to the absence of the library of this sensor. This work is devoted to the adaptation of the Adafruit INA219 sensor module in the LabVIEW environment through creating, developing, and successfully testing a Sub VI to be ready for employment in an ICCP system. The sensor output was monitored with an Arduino Uno microcontroller and the LabVIEW Linx firmware toolkit. Pulse Width Modulation (PWM) technique, which ranges from 0% to 100%, was applied by the Arduino to supply the l298N voltage driver in order to regulate the voltage input to the load. A moving average filter was employed to measure the ripple voltage averaging, and a median filter was utilized to stabilize the readings. A passive low-pass filter circuit smoothed the PWM voltage before supplying the load. The results from the MATLAB-Simulink environment showed a cut-off frequency of 2.33 Hz, ripple voltage peak to peak was 41.1 mV and a settling time of 0.157 seconds. The calibrated results of the INA219 module sensor showed an absolute voltage inaccuracy of around 2.3% at full scale. In addition, an absolute error in the current of 2.2% at 25 mA shows a gradual increase as the current increases to 7% at 43 mA, while the highest absolute error for the full scale of power was at 5.8%. The obtained measurements were highly precise, and the values of the coefficient of variation were 0.36 %, 0.28% and 0.17% for the voltage, current, and power, respectively.