Combining ultrasonic irradiation and the Fenton process as a sono-Fenton process, the chemical oxygen demand (COD) in refinery wastewater was successfully eliminated using response surface methodology (RSM) with central composite design (CCD). The impact of two main influential operational parameters (iron dosage and reaction time) on the COD removal from wastewater generated by an Iraqi petroleum refinery facility was explored. Removal of 85.81% was attained under the optimal conditions of 21 minutes and 0.289 mM of concentration. Additionally, the results revealed that the concentration of has the highest effect on the COD elimination, followed by reaction time. The high R2 value (96.40%) validated the strong fit of the model equation and the successful adopting RSM in the treatment of wastewaters from petroleum refineries. Furthermore, a comparison among sono-Fenton, sono-Fenton with addition of externally, classical Fenton and sonolysis processes showed that the combined process of sono-Fenton is better than individual processes and the external addition of .
The main objective of this study is to determine the suitable excitation wavelengths for
urine components reaching to select the suitable lasers to execute the auto fluorescence due to their
high intensities. The auto fluorescence was measured at 305, 325 and 350 nm excitation wavelengths
for eleven urine samples which were also analyzed by conventional methods (chemical and
microscopic examination). Data manipulation using Matlab package programming language showed
that urine sample with normal chemical and biological components have emission peaks which are
different from the infected urine samples. Despite the complexity of the composition of urine,
fluorescence maxima can be observed. Most likely, the peaks obser
The main objective of this study is to determine the suitable excitation wavelengths for
urine components reaching to select the suitable lasers to execute the auto fluorescence due to their
high intensities. The auto fluorescence was measured at 305, 325 and 350 nm excitation wavelengths
for eleven urine samples which were also analyzed by conventional methods (chemical and
microscopic examination). Data manipulation using Matlab package programming language showed
that urine sample with normal chemical and biological components have emission peaks which are
different from the infected urine samples. Despite the complexity of the composition of urine,
fluorescence maxima can be observed. Most likely, the peaks obser
Forward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of
... Show MoreThe goal of present study was to investigate the benefits of broccoli (as antiandrogenic plant) in protection and treatment for reproductive hormonal and metabolic disturbance, which combined with polycystic ovarian syndrome (PCOS). The PCOS model was introduced by injecting subcutaneously prepubertal female rats at 21 days old with Letrozole for 39 days, and divided into 6 groups (8 rats each ) as follows:
Group 1: Female rats were injected with 0.1 ml of normal saline. Group 2: Female rats were injected with 0.1 ml of 400 µg Letrozole Group 3: Female rats were injected with 0.1 ml of 400 µg L with orally gavaged of broccoli juice. Group 4: Female rats were injected with 0.1 ml of normal saline and at the end of the last
Comparative Study Between Glimepiride and Glibenclamide in the Treatment of Type 2 Diabetic Patients in Al-Yarmouk Hospital
Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottl
... Show MoreA microbubble air flotation technique was used to remove chromium ions from simulated wastewater (e.g. water used for electroplating, textiles, paints and pigments, and tanning leather). Experimental parameters were investigated to analyze the flotation process and determine the removal efficiency. These parameters included the location of the sampling port from the bottom of the column, where the diffuser is located to the top of flotation column (30, 60, and 90 cm), the type of surfactant (anionic, SDS, or cationic, CTAB) and its concentration (5, 10, 15, and 20 mg/L), the pH of the initial solution (3, 5, 7, 9, and 11), the initial contaminant concentration (10, 20, 30, and 40 mg/L), the gas flow rate (0.1, 0.2, 0.3, and 0.5 L/mi
... Show MoreIn this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.
Background: The treatment of articular cartilage defects is one of the most clinical challeng for orthopedic surgeons. Articular cartilage is a highly organized tissue with complex biomechanical properties and substantial durability. However, it has a poor ability for healing, and damage from trauma or degeneration can result in morbidity and functional impairment. debilitating joint pain, dysfunction, and degenerative arthritis &nbs
... Show More