Aqueous Two Phase System (ATPS) or liquid-liquid extraction is used in biotechnology to recover valuable compounds from raw sources. In Aqueous Two-Phase Systems, many factors influence the Partition coefficient, K, (which is the ratio of protein concentration in the top phase to that in the bottom phase) and the Recovery percentage (Rec%). In this research, two systems of ATPS were used: first, polyethylene glycol (PEG) 4000/Sodium citrate (SC), and the second, PEG8000/ Sodium phosphate (SPH), for the extraction of Bovine Serum Albumin (BSA). The behavior of Rec% and K of pure (BSA) in ATPS has been investigated throughout the study by the effects of five parameters: temperature, concentration of polyethylene glycol (PEG4000 and PEG8000), the concentration of Sodium citrate or Sodium phosphate, pH, and the addition of sodium chloride as a supporting agent. The recovery percentage of BSA and its partition coefficient are significantly influenced by these factors to various degrees. The most influential variable in this study is PEG concentration for both systems. In addition to the PEG concentration, the stabilizing impact of NaCl is a crucial factor. The interaction between biomolecules and PEG gets more hydrophobic as the PEG concentration is raised. In the first system (PEG4000/SC), the maximum recovery percentage and partition coefficient were 98.99% and 97.69, respectively, at 31°C, PEG4000 concentration 1.5g/10 ml, Sodium citrate concentration 2.7 g/10 ml, pH 10, and 0.5 M NaCl concentration. While in the second system (PEG8000/SPH), the maximum recovery percentage and partition coefficient was 98.93% and 92.12, respectively, at 31oC, PEG8000 concentration 1.5 g/10 ml, Sodium phosphate concentration 2.4 g/10 ml, pH 10, and concentration of NaCl 0.5 M.
Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,
... Show MoreAbstract
Business organizations are using the technological innovations like cloud computing (CC) as a developmental platform in order to improve the performance of their information systems. In that context, our paper discusses know-how in employing the public and private CC to serve as platforms to develop the evaluation system of annual employees' performance (ESAEP) at Iraqi universities. Therefore, we ask the paper question which is “Is it possible to adopt the innovative solutions of ICTs (Like: public and private CC) for finding the developmental vision about management information systems at business organizations?”. In addition, the paper aim
... Show MoreThe introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
Density data of alum chrom in water and in aqueous solution of poly (ethylene glycol) (1500) at different temperatures (288.15, 293.15, 298.15) k have been used to estimate the apparent molar volume (Vθ), limiting apparent molar volume (Vθ˚) experimental slope (Sv) and the second derivative of limiting partial molar volume [δ2 θ v° /δ T2] p .The viscosity data have been analyzed by means of Jones –Dole equation to obtain coefficient A, and Jones –Dole coefficient B, Free activation energy of activation per mole of solvent, Δμ10* solute, Δμ20* the activation enthalpy ΔH*,and entropy, ΔS*of activation of viscous flow. These results have been discussed in terms of solute –solvent interaction and making/breaking ability of so
... Show MoreCocoon of larva
The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual – fuel (diesel and LPG).
The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presented.
Dual-fuel operation at part load showed higher specific fuel consumption than straight diesl operation. At full loads, brake specific fuel consumption of duel fuel engine approaches that for diesel fuel values.
A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherw
... Show MoreIraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show More