The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the system, (3) evaluating the annual energy and exergy analyses of the system under Mashhad weather conditions, and (4) examining the CO2 reduction by using the proposed system. The results show that for the (glazed) PVT and (glazed) ST systems, increasing the mass flow rate of the working fluid from 20 to 50 kg/h results in 22% and 1.5% improvements in both thermal and electrical power, respectively. However, the thermal exergy of the system decreases by 40.1%. Furthermore, the (glazed) PVT/(glazed) ST systems generate approximately 86% and 264% more thermal power and energy than the PVT/ST systems, respectively. Using a (glazed) PVT/(glazed) ST system with a working fluid’s mass flow rate of 50 kg/h results in maximum thermal and electrical efficiencies of 40.7% and 16.22%, respectively. According to the annual analysis, the highest average thermal and electrical power, equal to approximately 338.3 and 24 W, respectively, is produced in August. The amount of CO2 reduction increases by increasing the mass flow rate and using a glass cover. The PVT/(glazed)ST system has the potential to reduce CO2 emissions by 426.3 kg per year.
Before the unit environmental problems serious the issues of the environment and conservation of contemporary issues important in the developed and developing worlds, it was natural that leads increasing global awareness to alert a group of intellectuals, scientists and politicians to the seriousness of this problem and the call to take steps deeper and more comprehensive with respect to the environment humanitarian based on the study of the various elements of this environment and a greater understanding of the relationships among them, and on this basis, steps have been taken to target the environment and to identify problems and make efforts to achieve the goals I: stop the deterioration of the environment and the second impro
... Show MoreThe holmium plasma induced by a 1064-nmQ-switched Nd:YAG laser in air was investigated. This work was done theoretically and experimentally. Cowan code was used to get the emission spectra for different transition of the holmium target. In the experimental work, the evolution of the plasma was studied by acquiring spectral images at different laser pulse energies (600,650,700, 750, and 800 mJ). The repetition rates of (1Hz and 10Hz) in the UV region (200-400 nm). The results indicate that, the emission line intensities increase with increasing of the laser pulse energy and repetition rate. The strongest emission spectra appeared when the laser pulse energy is 800mJ and 10 Hz repetition rate at λ= 345.64nm, with the maximum intensi
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MoreThe characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
We have investigated the photoemission and electronic properties at the PTCDI molecules interface on TiO2 and ZnO semiconductor by means of charge transition. A simple donor acceptor scenario used to calculate the rate for electron transfer of delocalized electronics in a non-degenerately TiO2 and ZnO electrodes to redox localized acceptors in an electrolytic. The dependent of electronic transition rate on the potential at contact of PTCDI with TiO2 and ZnO semiconductors, it has been discussion using TiO2 and ZnO electrodes in aqueous solutions. The charge transfer rate is determining by the overlapping electronic coupling to the TiO2 and ZnO electrodes, the transition energy, potential and polarity media within the theoretical scenario of
... Show MoreA fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.
The solar eclipse occurs at short time before the crescent birth moment when the moon near any one of moon orbit nodes It is important to determine the synchronic month which is used to find Higree date. The 'rules' of eclipses are:
Y= ± 0.997 of Earth radius , the solar eclipse is central and 0.997 < |Y| < 1.026 the umbra cone touch the surface of the Earth, where Y is the least distance from the axis of the moon's shadow to the center of the Earth in units of the equatorial radius of the Earth.
A new model have been designed, depend on the horizontal coordinates of the sun, moon, the distances Earth-Moon (rm), Earth-sun (rs) and |Y| to determine the date and times of total solar eclipse and the geogra
... Show MoreAbstract: -
The concept of joint integration of important concepts in macroeconomic application, the idea of cointegration is due to the Granger (1981), and he explained it in detail in Granger and Engle in Econometrica (1987). The introduction of the joint analysis of integration in econometrics in the mid-eighties of the last century, is one of the most important developments in the experimental method for modeling, and the advantage is simply the account and use it only needs to familiarize them selves with ordinary least squares.
Cointegration seen relations equilibrium time series in the long run, even if it contained all the sequences on t
... Show MoreThis research aims to studying and analyzing the theoretical
framework of the environmental auditing in industrial environment to its a broad and danger environmental effects . It aims to contribute in setting and testing a proposed procedure framework for environmental auditing in that vital activity .The practical aspect focused on testing a proposed framework within practice it in a one Iraqi industrial company that has a huge effect on environmental activity, represented by Iraqi state company