The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the system, (3) evaluating the annual energy and exergy analyses of the system under Mashhad weather conditions, and (4) examining the CO2 reduction by using the proposed system. The results show that for the (glazed) PVT and (glazed) ST systems, increasing the mass flow rate of the working fluid from 20 to 50 kg/h results in 22% and 1.5% improvements in both thermal and electrical power, respectively. However, the thermal exergy of the system decreases by 40.1%. Furthermore, the (glazed) PVT/(glazed) ST systems generate approximately 86% and 264% more thermal power and energy than the PVT/ST systems, respectively. Using a (glazed) PVT/(glazed) ST system with a working fluid’s mass flow rate of 50 kg/h results in maximum thermal and electrical efficiencies of 40.7% and 16.22%, respectively. According to the annual analysis, the highest average thermal and electrical power, equal to approximately 338.3 and 24 W, respectively, is produced in August. The amount of CO2 reduction increases by increasing the mass flow rate and using a glass cover. The PVT/(glazed)ST system has the potential to reduce CO2 emissions by 426.3 kg per year.
Climate change is one of the global issues that is receiving wide attention due to its clear impact on all living organisms. This is essential for Iraq since it was classified as the fifth most vulnerable country to climate change. One of the manifestations of these changes in Iraq is the increasing frequency and severity of dust storms. In this study, the Normalized Difference Dust Index (NDDI) spectral index for Moderate Resolution Imaging Spectroradiometer (MODIS) sensor bands was used to measure and track the dust storm that occurred on May 16, 2022, as well as to test the validity of one of the daily products of this sensor, MOD11A1, to measure surface temperature and emissivity before and after the storm. It was found that the MOD0
... Show MoreRoof in the Iraqi houses normally flattening by a concrete panel. This concrete panel has poor thermal properties. The usage of materials with low thermal conductivity and high specific heat gives a good improvements to the thermal properties of the concrete panel, thus, the indoor room temperature improves. A Mathcad program based on a mathematical model employing complex Fourier series built for a single room building. The model input data are the ambient temperature, solar radiation, and sol-air temperature, which have been treated as a periodic function of time. While, the room construction is constant due to their materials made of it, except the roof properties are taken as a variable generated practically from the
... Show MoreBackground: In the present study used device jet plasma needle with atmospheric pressure which generates non thermal plasma jet to measure treatment potent with plasma against pathogenic bacteria founded in UTI was inactivated with plasma at 10 sec,
Objective:. This work included the application of the plasma produced from the system in the field of bacterial sterilization , where sample of Gram- negative bacteria (Escherichia coli) were exposed to intervals (1-10)second . Midstream Urine samples swabs were obtained from patients with urinary tract infections.
Type of the study: Cross -sectional study.
Methods: The work were used i
... Show MoreDBNRAHA Hameed, IJRSSH PUBLICATION, 2018
Dell Hymesin 1964coined The Ethnography of Communication in an attempt to explain the ways in which people use the language to interact. It hypothesizes that ethnography is less applicable among participants who have the same sociocultural background. It was proven that all the basic speech components occur whenever there is an interactional situation. The elements of (SPEAKING) schema are closely connected. However, the findings establish the fact that these elements take place effectively among participants who have the same sociocultural background.One of the most outstanding conclusions is the capability of the (SPEAKING) model to analyze not only an interaction between two or more participants, but also any event which consists of a mo
... Show MoreNew polymer blend with enhanced properties was prepared from (80 %) epoxy resin (Ep), (20%) unsaturated polyester resin (UPE) as a matrix material. The as-obtained polymer blend was further reinforced by adding Sand particles of particle size (53 μm) with various weight fraction (5, 10, 15, 20 %). Thermal conductivity and sorption measurements are performed in order to determine diffusion coefficient in different chemical solutions (NaOH, HCl) with concentration (0.3N) after immersion for specific period of time (30 days). The obtained results demonstrate that the addition of sand powder to (80%EP/20%UPE) blend leads to an increase of thermal conductivity, with an optimum/minimum diffusion coefficient in (HCl)/(NaOH), respectively.
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MoreSYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS
RKRAS L. K. Abdul Karem, F. H. Ganim, Biochemical and Cellular Archives, 2018 - Cited by 2
A numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.