Incremental sheet forming (ISF) process offers a high degree of flexibility in the manufacturing of different sheet parts, which makes it an ideal candidate for prototype parts as well as efficient at fabricating various customized products at low production costs compared to traditionally used processes. However, parts produced in this process exhibit notable geometrical inaccuracy and considerable thickness reduction. In this paper, the single point incremental sheet forming variant of the process has been implemented to manufacture a highly customized cranial implant starting from the computed tomography (CT) scan data of the patient's anatomy. A methodology, from the modeling to the realization of the implant, is presented and discussed. The primary aim of the research was to analyze and study the effect of the multistage toolpath strategy compared to the traditional single-stage toolpath in terms of geometrical accuracy and thickness distribution. The final results show that the part formed in the multistage toolpath strategy exhibited a more uniform thickness distribution compared to the single-stage approach. Regarding the geometrical accuracy, the deviation analysis between the nominal and actual data has revealed that the multistage forming has significantly enhanced the final geometrical accuracy of the formed part.
The N-[(2,3-dioxoindolin-1-yl)-N-methylbenzamide] was prepared by the reaction of acetanilide with isatin then in presence of added paraformaldehyde, the prepared ligand was identified by microelemental analysis, FT.IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following selected metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). From the obtained data the octahed
... Show MoreThe [2-hydroxy-1, 2-diphynel-ethanone oxime] was reacted with 1, 2-dichloroethan to give the new ligand [H2L]. this ligand was reacted with some metal ions (Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) in methanol as a solvent to give a series of new (1: 1) complexes of the general formula [M (HL)] Cl,(where: M= Co (II), Ni (II), Cu (II), Zn (II) and Cd (II)) are isolated All compounds have been characterized by spectroscopic methods [IR, UV-Vis] atomic absorption. Chloride content along with conductivity measurements. From the above data the proposed molecular structure for (Co, Cu, Ni, Zn and Cd) complexes adopting a tetrahedral structure
Abstract
Objectives: To find out the association between enhancing learning needs and demographic characteristic of (gender, education level and age).
Methods: This study was conducted on purposive sample was selected to obtain representative and accurate data consisting of (90) patients who are in a peroid of recovering from myocardial infarction at Missan Center for Cardiac Diseases and Surgery, (10) patients were excluded for the pilot study, Data were analyzed using descriptive statistical data analysis approach of frequency, percentage, and analysis of variance (ANOVA).
Results: The study finding shows, there was sign
... Show MoreTwo Schiff bases, namely, 3-(benzylidene amino) -2-thioxo-6-methyl 2,5-dihydropyrimidine-4(3H)-one (LS])and 3-(benzylidene amino)-6-methyl pyrimidine 4(3H, 5H)-dione(LA)as chelating ligands), were used to prepare some complexes of Cr(III), La(III), and Ce(III)] ions. Standard physico-chemical procedures including metal analysis M%, element microanalysis (C.H.N.S) , magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identify Metal (III) complexes and Schiff bases (LS) and (LA). According to findings, a [Cr(III) complex] showed six coordinated octahedral geometry, while [La(III), and Ce(III) complexes]were structured with coordination number seven. Schiff's bases a
... Show MoreThe gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show More