Succinic acid is an essential base ingredient for manufacturing various industrial chemicals. Succinic acid has been acknowledged as one of the most significant bio based building block chemicals. Rapid demand for succinic acid has been noticed in the last 10 years. The production methods and mechanisms developed. Hence, these techniques and operations need to be revised. Recently, an omnibus rule for developing succinic acid is to find renewable carbohydrate Feedstocks. The sustainability of the resource is crucial to disintegrate the massive use of petroleum based-production. Accordingly, systematically reviewing the latest findings of bacterial production and related fermentation methods is critical. Therefore, this paper aims to study the latest research and assess the findings statistically comprehensively. The current review attempt is a step toward comprehending all the conditions surrounding succinic acid production from raw materials, microorganisms, and fermentation methods.
The researches to discover useful ways to represent the agents and agent-based
systems are continuous. Unified Modeling Language (UML) is a visual modeling language
used for software and non software modeling systems. The aim of this paper is: using UML
class diagram to design treasury pharmaceuticals agent and explain its internal action. The
diagram explains the movement of the agent among other nodes to achieve user's requests
(external) after it takes them. The paper shows that it is easy to model the practical systems by
using agent UML when they are used in a complex environment.
THE PROBLEM OF TRANSLATING METAPHOR IN AN ARTISTIC TEXT (ON THE MATERIAL OF RUSSIAN AND ARABIC LANGUAGES)
The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur
Use of computer simulation to quantify the effectiveness of blowing agents can be an effective tool for optimizing formulations and for the adopting of new blowing agents. This paper focuses on a mass balance on blowing agent during foaming including the quantification of the amount that stays in the resin, the amount that ends up in the foam cells, and the pressure of the blowing agent in the foam cells. Experimental data is presented both in the sense of developing the simulation capabilities and the validating of simulation results.