Preferred Language
Articles
/
alkej-819
Mechanical PropertiesInvestigation of Unidirectional Woven Carbon Fiber Reinforced Epoxy Matrix Composite
...Show More Authors

In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other.  The results explained that woven carbon composite had  higher mechanical resistance. While  in impact test the toughness of the sample  increased with adding layers of mixture of Fiber glass with unidirectional woven carbon and epoxy.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Carbonized Copolymers Nonwoven Nanofibers Composite: Surface Morphology and Fibers Orientation
...Show More Authors

Carbonized nonwoven nanofibers composite were fabricated using the electrospinning method of a polymeric solution composite followed by heat treatment including stabilization and calcination steps. The spun polymeric solution was a binary polymer mixture/organic solvent. In this study, two types of polymers (Polymethylmethacrylate (PMMA) and Polyethylene glycol (PEG)) were used separately as a copolymer with the base polymer (Polyacrylonitrile (PAN)) to prepare a binary polymer mixture in a mixing ratio of 50:50. The prepared precursor solutions were used to prepare the precursor nanofibers composite (PAN: PMMA) and (PAN: PEG).  The fabricated precursors nonwoven fibers composite were stabilized and carbonized to produce carbon nonw

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A Finite Element Analysis for the Damaged Rotating Composite Blade
...Show More Authors

In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included.  The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. After modeling a non-damaged rotating composite blade, the work procedure was to ap

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2008
Journal Name
J Bagh College Of Dentistry
Assessment of consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite
...Show More Authors

Background: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Highly Sensitive Fiber Brag Grating Based Gas Sensor Integrating Polyaniline Nanofiber for Remote Monitoring
...Show More Authors

View Publication
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Laser
PDF Temporal Pulse Compression Using Double Cladding Polarization Maintaining Fiber Nested Mach- Zehnder Interferometer
...Show More Authors

 

Abstract: Narrow laser pulses have been essential sources in optical communication system. High data rate optical communication network system demands compressed laser source with unique optical property. In this work using pulsed duration (9) ns, peak power 1.2297mW, full width half maximum (FWHM) 286 pm, and wavelength center 1546.7 nm as compression laser source. Mach Zehnder interferometer (MZI) is built by considering two ways. First, polarization maintaining fiber (PMF) with 10 cm length is used to connect between laser source and fiber brag grating analysis (FBGA). Second, Nested Mach Zehnder interferometer (NMZI) was designed by using three PMFs with 10 cm length. These three Fibers are splicing to sing

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Journal Of Materials Engineering And Performance
High Speed Shock Peening by Fiber Laser for Al Alloy 6061-T6 Thin Sheets
...Show More Authors

Under cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fa

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Nov 04 2022
Journal Name
Journal Of Optics
Coreless optical fiber for hemoglobin (HB) sensing with bilayer based on surface plasmon resonance
...Show More Authors

In this work, an optical fiber biomedical sensor for detecting the ratio of the hemoglobin in the blood is presented. A surface plasmon resonance (SPR)-based coreless optical fiber was developed and implemented using single- and multi-mode optical fibers. The sensor is also utilized to evaluate refractive indices and concentrations of hemoglobin in blood samples, with 40 nm thickness of (20 nm Au and 20 nm Ag) to increase the sensitivity. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.

View Publication Preview PDF
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Optical Fiber Technology
Highly sensitive fiber Bragg grating based gas sensor integrating polyaniline nanofiber for remote monitoring
...Show More Authors

View Publication
Scopus (10)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Study of rheological and mechanical properties of bitumen blended with two alpha phases of polyamide
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Study of rheological and mechanical properties of bitumen blended with two alpha phases of polyamide
...Show More Authors

The effect of D phase polyamide (PA6)on the rheological properties, Young Modulus and the thermal expansion coefficient of two blends groups (bitumen-polyamide) were tested. The first group was for bitumen-PA6 blends and the second group for bitumen blended with polymer resulted from the crystallization of PA6-formic acid solution in water(PAFW).The obtained results proved that adding both types of polyamide has led to a rise in toughness and softening point temperature while the penetration Index approached -3 after adding the polyamide. So, all these changes make bitumen-polyamide blends more suitable for use in hot climate regions. The blends properties were explained according to the reaction that takes place between the polyamide and

... Show More
Preview PDF
Scopus (1)
Scopus Crossref