In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The results explained that woven carbon composite had higher mechanical resistance. While in impact test the toughness of the sample increased with adding layers of mixture of Fiber glass with unidirectional woven carbon and epoxy.
In this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
Mechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight rat
... Show MoreAddition of bioactive materials such as Titanium oxide (TiO2), and incorporation of bio inert ceramic such as alumina (Al2O3), into polyetheretherketone (PEEK) has been adopted as an effective approach to improve bone-implant interfaces. In this paper, hot pressing technique has been adopted as a production method. This technique gave a homogenous distribution of the additive materials in the proposed composite biomaterial. Different compositions and compounding temperatures have been applied to all samples. Mechanical properties and animal model have been studied in all different production conditions. The results of these new TiO2/Al2O3/PEEK biocomposites with different
... Show MoreIn this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
Many faces are exposed to degradation, discoloration, changes in humidity. The primary objective has improved some properties of hybrid nanocomposites materials that used for restoring of the function maxillofacial prosthesis and improving the esthetic. In the present research different lengths chopped and continuous of ultrahigh molecular weight polyethylene (UHMWPE) fiber was added at selected percentage (0.0, 0.2% and 1%) to polymer blend composite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) for developing the properties of silicone rubber used for the maxillofacial prosthesis applications. Some mechanical and physical properties were done on the all prepared samples. The results showed that all properties have improved when add
... Show MoreThe paper presents mainly the dynamic response of an angle ply composite laminated plates subjected to thermo-mechanical loading. The response are analyzed by analytically using Newmark direct integration method with Navier solution, numerically by ANSYS. The experimental investigation is to fabricate the laminates and to find mechanical and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus, longitudinal and transverse thermal expansion. Present of temperature could increase dynamic response of plate also depending on lamination angle, type of mechanical load and the value of temperature.
The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m
... Show MoreAbstract
In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue l
... Show MoreIn this paper we investigate how do the laminated composites behave mechanically when subjected to external stresses, when reinforced with continuous fibers (mat) and discontinuous fibers (chopped) and to find the effect of the fiber type on the mechanical properties. Laminated composites consisting of wood- wood and Ph-F resin as suitable adhesive were reinforced with different fibers(jute, glass, and carbon).However, two different methods of reinforcement namely, mat and chopped fibers were utilized. The mechanical properties such as (impact strength, compression strength, tensile strength, shear strength, bending strength, and elasticity modulus) of laminated composites were measured. Fibers reinforced laminated composite
... Show More