Preferred Language
Articles
/
alkej-814
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steering angle of a self-driving vehicle that is suitable to be applied to embedded automotive technologies with limited performance. Three well-known pre-trained models were compared in this study: AlexNet, ResNet18, and DenseNet121.

Transfer learning was utilized by modifying the final layer of pre-trained models in order to predict the steering angle of the vehicle. Experiments were conducted on the dataset collected from two different tracks. According to the study's findings, ResNet18 and DenseNet121 have the lowest error percentage for steering angle values. Furthermore, the performance of the modified models was evaluated on predetermined tracks. ResNet18 outperformed DenseNet121 in terms of accuracy, with less deviation from the center of the track, while DenseNet121 demonstrated greater adaptability across multiple tracks, resulting in better performance consistency.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
An Investigation to the Abrasive Wear in Pipes Used for Oil Industry
...Show More Authors

The work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 01 2012
Journal Name
Journal Of Educational And Psychological Researches
Family Atmosphere and Relationship to Academic Adjustment for Student at Baghdad University
...Show More Authors

The research aimed: 1. Definition of family climate for the university students. 2. Definition of statistical significance of differences in family climate variable depending on the sex (males - females) and specialization (Scientific - humanity). 3. Definition of academic adjustment for university students. 4. Definition of correlation between climate and academic adjustment. The research sample formed of (300) male and female students by (150) male of scientific and humanitarian specialization and (150) female of scientific and humanitarian specialization randomly selected from the research community. To achieve the objectives of the research the researcher prepared a tool to measure family climate. And adopted the measure (Azzam 2010)

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Aip Conference Proceedings
Numerical solution for weight reduction model due to health campaigns in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method t

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 15 2020
Journal Name
Aip Conference Proceedings
Land cover change for Baghdad City in the period 1986 to 2019
...Show More Authors

Earth cover of the city of Baghdad was studied exclusively within its administrative border during the period 1986-2019 using satellite scenes every five years, as Landsat TM5 and OLI8 satellite images were used. The land has been classified into ten subclasses according to the characteristics of the land cover and was classified using the Maximum Likelihood classifier. A study of the changing urban reality of the city of Baghdad during that period and the change of vegetation due to environmental factors, human influences and some human phenomena that affected the accuracy of the classification for some areas east of the city of Baghdad is presented. The year 2019 has been highlighted because of its privacy in changing the land cover of th

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Mar 15 2021
Journal Name
Applied Sciences
Leading Edge Blowing to Mimic and Enhance the Serration Effects for Aerofoil
...Show More Authors

Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowi

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Feb 28 2025
Journal Name
The Iraqi Geological Journal
Assessing Acid Fracturing for Low-Permeability Carbonate Formation to Improve Oil Production
...Show More Authors

This study investigates the application of hydraulic acid fracturing to enhance oil production in the Mishrif Formation of the Al-Fakkah oilfield due to declining flow rates and wellhead pressures resulting from asphaltene deposition and inadequate permeability. Implementing acid fracturing, an established technique for low-permeability carbonate reserves, was essential due to the inadequacy of prior solvent cleaning and acidizing efforts. The document outlines the protocols established prior to and following the treatment, emphasizing the importance of careful oversight to guarantee safety and efficacy. In the MiniFrac treatment, 150 barrels of #30 cross-linked gel were injected at 25 barrels per minute, followed by an overflush wi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Construction Engineering And Management
Developing a Decision-Making Framework to Select Safety Technologies for Highway Construction
...Show More Authors

View Publication
Scopus (55)
Crossref (56)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Alexandria Engineering Journal
U-Net for genomic sequencing: A novel approach to DNA sequence classification
...Show More Authors

The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Aip Conference Proceedings
Application of simulated annealing to solve multi-objectives for aggregate production planning
...Show More Authors

Aggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
comparison Bennett's inequality and regression in determining the optimum sample size for estimating the Net Reclassification Index (NRI) using simulation
...Show More Authors

 Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat

... Show More
View Publication Preview PDF
Crossref