Sensitive information of any multimedia must be encrypted before transmission. The dual chaotic algorithm is a good option to encrypt sensitive information by using different parameters and different initial conditions for two chaotic maps. A dual chaotic framework creates a complex chaotic trajectory to prevent the illegal use of information from eavesdroppers. Limited precisions of a single chaotic map cause a degradation in the dynamical behavior of the communication system. To overcome this degradation issue in, a novel form of dual chaos map algorithm is analyzed. To maintain the stability of the dynamical system, the Lyapunov Exponent (LE) is determined for the single and dual maps. In this paper, the LE of the single and dual maps have been computed numerically. Increasing the dynamical behavior of the system by using more complex chaotic maps leads to inferiority in the overall system performance. So, in this work, the BER performance for the dual and single chaotic maps by exploiting the benefits of a hybrid Chaos Shift Keying-Multiple-Input-Multiple-Output (CSK-MIMO) communication system has been investigated. The results show that the dual tent map has more randomness, whereas the single logistic map has the least randomness. As well as the CSK-MIMO gives an outstanding BER performance when it compared with the SISO system which helps in reducing the system’s inferiority.
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreAspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Proce
... Show MoreThe choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
Pure and doped TiO 2 with Bi films are obtained by pulse laser deposition technique at RT under vacume 10-3 mbar, and the influence of Bi content on the photocvoltaic properties of TiO 2 hetrojunctions is studied. All the films display photovoltaic in the near visible region. A broad double peaks are observed around λ= 300nm for pure TiO 2 at RT in the spectral response of the photocurrent, which corresponds approximately to the absorption edge and this peak shift to higher wavelength (600 nm) when Bi content increase by 7% then decrease by 9%. The result is confirmed with the decreasing of the energy gap in optical properties. Also, the increasing is due to an increase in the amount of Bi content, and shifted to 400nm when annealed at 523
... Show MoreThis paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreImaging by Ultrasound (US) is an accurate and useful modality for the assessment of gestational age (GA), estimation fetal weight, and monitoring the fetal growth during pregnancy, is a routine part of prenatal care, and that can greatly impact obstetric management. Estimation of GA is important in obstetric care, making appropriate management decisions requires accurate appraisal of GA. Accurate GA estimation may assist obstetricians in appropriately counseling women who are at risk of a preterm delivery about likely neonatal outcomes, and it is essential in the evaluation of the fetal growth and detection of intrauterine growth restriction. There are many formulas are used to estimate fetal GA in the world, but it's not specify fo
... Show More