This paper represents an experimental study on the application of smart control represented by the use of the fuzzy logic controller. Two-link flexible manipulators that are used in airspace and military applications are made of flexible materials characterized by low frequency and damping ratio. To solve this problem, this paper proposes the use of smart materials (piezoelectric transducers), where each link is bonded with a pair of piezoelectric transducers that act as a sensor and another as an actuator. As the arm vibrates because of the movement generated by the motor, this voltage is controlled by a regulator inside the LABVIEW® 2020 software and sends the output control voltage to the piezoelectric actuator. Experimental results show that fuzzy logic control was efficient during high amplitude and led to pronounced results in suppressing vibrations within a short time. Fuzzy logic gives more flexibility to the designer and allows him to control the system through its simple implementation. This differs from classical control, which requires a mathematical model.
Celiac disease (CD) is the most common genetically - based disease in correlation with food intolerance. The aim of this study is to measure the activity of ALT enzyme and purify enzyme from sera women with celiac disease. Alanine aminotransferase (ALT) activity has been assayed in (30) women serum samples with celiac disease, age range between (20-40) year and (30) serum of healthy women as control group, age range between (22-38) year. In the present study, the mean value of ALT activity was significantly higher in patients with celiac disease than healthy group (p<0.01). The ALT enzyme was partial purified from sera women with celiac disease by dialysis, gel filtration using Sephadex G- 50 and ion exchange chromatography using DEAE- cell
... Show More(E)-2-(benzo[d]thiazol-2-yliazenyl)-4-methoxyaniline was synthesized by reaction the diazonium salt of 2-aminobenzothiazole with 4-methoxyaniline. Identified of the ligand by spectral techniques (UV-Vis, FTIR,1HNMR and LC-Mass) and microelemental analysis (C.H.N.S.O) are used to produce of the azo ligand. Complexes of (Co2+, Ni2+, Cu2+ and Zn2+) were synthesized and identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4-3×10-4 mole/L). height molar absorptivity of compound solutions h
... Show MoreIt is believed that Organizations around the world should be prepared for the transition to IPv6 and make sure they have the " know how" to be able to succeed in choosing the right migration to start time. This paper focuses on the transition to IPv6 mechanisms. Also, this paper proposes and tests a deployment of IPv6 prototype within the intranet of the University of Baghdad (BUniv) using virtualization software. Also, it deals with security issues, improvements and extensions of IPv6 network using firewalls, Virtual Private Network ( VPN), Access list ( ACLs). Finally, the performance of the obtainable intrusion detection model is assessed and compared with three approaches.
In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show MoreBackground: Contact between implant material and bones must be strong and fast creation, to fulfill these properties appropriate surface modifications must apply on used implants. In this contribution; double surface modifications are applied on Ti-6Al-4V alloy to accelerate osseointegration. Materials and methods: Anodic process is utilized to create titania nanotubes (TNTs) on the screws made from Ti-6Al-4V alloy. These implants were coated with nano ZrO2 particles. Second modification was annealing anodized screws at 8000C, and implanted in tibiae of nine adult New Zealand white rabbits. Results: Physical and histological consequences of two surface modifications on Ti-6Al-4V alloy screws were studied. Scanning electron microscope (SEM)
... Show More