This paper represents an experimental study on the application of smart control represented by the use of the fuzzy logic controller. Two-link flexible manipulators that are used in airspace and military applications are made of flexible materials characterized by low frequency and damping ratio. To solve this problem, this paper proposes the use of smart materials (piezoelectric transducers), where each link is bonded with a pair of piezoelectric transducers that act as a sensor and another as an actuator. As the arm vibrates because of the movement generated by the motor, this voltage is controlled by a regulator inside the LABVIEW® 2020 software and sends the output control voltage to the piezoelectric actuator. Experimental results show that fuzzy logic control was efficient during high amplitude and led to pronounced results in suppressing vibrations within a short time. Fuzzy logic gives more flexibility to the designer and allows him to control the system through its simple implementation. This differs from classical control, which requires a mathematical model.
This valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum
... Show MoreThis paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.
The electrical performance of bottom-gate/top source-drain contact for p-channel organic field-effect transistors (OFETs) using poly(3-hexylthiophene) (P3HT) as an active semiconductor layer with two different gate dielectric materials, Polyvinylpyrrolidone (PVP) and Hafnium oxide (HfO2), is investigated in this work. The output and transfer characteristics were studied for HfO2, PVP and HfO2/PVP as organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric HfO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively, this can be attributed to the increasing of the dielectric capacitance. Transcondactance characteristics also studied for the three organic mater
... Show MoreThe software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem. The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).
... Show MoreAbstract
In this work, diabetic glucose concentration level control under disturbing meal has been controlled using two set of advanced controllers. The first set is sliding mode controllers (classical and integral) and the second set is represented by optimal LQR controllers (classical and Min-, ax). Due to their characteristic features of disturbance rejection, both integral sliding mode controller and LQR Minmax controller are dedicated here for comparison. The Bergman minimal mathematical model was used to represent the dynamic behavior of a diabetic patient’s blood glucose concentration to the insulin injection. Simulations based on Matlab/Simulink, were performed to verify the performance of each controll
... Show MoreThis paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.
A set of ten drug compounds containing an amino group in the structure were determined theoretically. The parameters were entered into a model to forecast the optimal values of practical (log P) medicinal molecules. The drugs were evaluated theoretically using different types of calculations which are AM1, PM3, and Hartree Fock at the basis set (HF/STO-3G). The Physico-chemical data like (entropy, total energy, Gibbs Free Energy,…etc were computed and played an important role in the predictions of the practical lipophilicity values. Besides, Eigenvalues named HOMO and LUMO were determined. Linearity was shown when correlated between the experimental data with the evaluated physical properties. The statistical analysis was used to analy
... Show MoreABSTRACT
Agricultural production, food security and safety, public health animal welfare, access to markets and alleviation of rural poverty have been achieved by controlling on veterinary services to prevent animal disease. World organization for animal health guidelines focus on controlling of animal disease which depends on good governance and veterinary services quality. The aim of veterinary services is controlling and preventing animal disease some of other aspects; it's responsibility of early detection, rapid response to outbreaks of emerging or re-emerging animal disease, optimizing quality and effectiveness of disease
... Show MoreThe regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show More