Preferred Language
Articles
/
alkej-783
Performance Prediction in EDM Process for Al 6061 Alloy Using Response Surface Methodology and Genetic Algorithm
...Show More Authors

The Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determining the optimal processing variables of Electrical Discharge Machining.

The material removal rate (MRR) and tool wear (Tw) were investigated using the process variables of pulse on time (Ton), pulse off time (Toff), and current intensity (Ip). The established empirical models were used to perform Genetic Algorithm (GA) to maximize (MRR) and minimize (Tw). The optimization results were utilized to establish machining conditions, validate empirical models, and obtain optimization outcomes. The optimal result that appears in this work was the pulse on (176.261 μs), pulse off (39.42 μs), and current intensity (23.62 Amp.) to maximize the MRR to (0.78391 g/min) and reduce tool wear to (0.0451 g/min).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Multiphase Flow Behavior Prediction and Optimal Correlation Selection for Vertical Lift Performance in Faihaa Oil Field, Iraq
...Show More Authors

In the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Nov 28 2020
Journal Name
The Iraqi Journal Of Science
Removal of Aniline Blue from Textile Wastewater using Electrocoagulation with the Application of the Response Surface Approach
...Show More Authors

This paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be

... Show More
Crossref (8)
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Al-khwarizmi Engineering Journal
A Methodology for Evaluating and Scheduling Preventive Maintenance for a Thermo-Electric Unit Using Artificial Intelligence
...Show More Authors

Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Preview PDF
Scopus
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Facial Emotion Images Recognition Based On Binarized Genetic Algorithm-Random Forest
...Show More Authors

Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Physics
Effect of Copper on Tensile and Hardness of Al-Si Alloy in Automotive Application
...Show More Authors

In current research Copper was employed for preparing a ternary system of Al–Si alloy in different (0.2–2.5 wt. %) the best was taken is (1.5%wt) of copper that circumstances of solidification for improving the mechanical performance of the available in aluminium alloy. Cast iron molds were prepared to obtain tensile strength testing specimens. Alloys were prepared by employing gas furnaces. The molten metal was poured into a preheated cast-iron mold. The obtained alloy structures were studied using an X-ray diffractometer and optical microscopy. The mechanical performance of the prepared alloys was examined under the influence of different hardening conditions in both heat and non-heat-treated conditions. The outcomes showed at the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Aip Conference Proceedings
Synthesis and evaluation of chalcone derivatives for antimicrobial and antioxidant activities using microwave-assisted methodology
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
The Effect of the Solution Heat Treatment on the Mechanical Properties of Aluminum-Copper Alloy (2024-T3) Using Rolling Process
...Show More Authors

The effect of solution heat treatment on the mechanical properties of Aluminum-Copper alloy. (2024-T3) by the rolling process is investigated. The solution heat treatment was implemented by heating the sheets to 480 C° and quenching them by water; then forming by rolling for many passes. And then natural aging is done for one month. Mechanical properties (tensile strength and hardness) are evaluated and the results are compared with the metal without treatment during the rolling process. ANSYS analysis is used to show the stresses distribution in the sheet during the rolling process.  It has been seen that good mechanical properties are evident in the alloy without heat treatment due to the strain hardening and also the mechanical

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Water Quality Assessment and Total Dissolved Solids Prediction using Artificial Neural Network in Al-Hawizeh Marsh South of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope

... Show More
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Engineering/
Water quality assessment and total dissolved solids prediction using artificial neural network in Al-Hawizeh marsh south of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The

... Show More