The world is currently facing a medical crisis. The epidemic has affected millions of people around the world since its appearance. This situation needs an urgent solution. Most countries have used different solutions to stop the spread of the epidemic. The World Health Organization has imposed some rules that people should adhere. The rules are such, wearing masks, quarantining infected people and social distancing. Social distancing is one of the most important solutions that have given good results to confront the emerging virus. Several systems have been developed that use artificial intelligence and deep learning to track social distancing. In this study, a system based on deep learning has been proposed. The system includes monitoring and detecting people besides measuring the social distance between them. The proposed system consists of two parts: (1) detecting the faces of people using the Viola-Jones algorithm. The Cascade classifiers were trained. The Cascade classifiers used in the algorithm with feature descriptors to detect side faces and wear masks. Hence, training is dominant for detection. (2) measurement of the Euclidean distance between the centers of the rectangles of the people who were revealed in the first part. The distance between individuals' is measured to check how well they adhere to social distancing. The results revealed that the proposed system can perform well in applying images to track the distance between people.
Theoretical and experimental investigations have been carried out on developing laminar
combined free and forced convection heat transfer in a vertical concentric annulus with uniformly
heated outer cylinder (constant heat flux) and adiabatic inner cylinder for both aiding and opposing
flows. The theoretical investigation involved a mathematical modeling and numerical solution for
two dimensional, symmetric, simultaneously developing laminar air flows was achieved. The
governing equations of motion (continuity, momentum and energy) are solved by using implicit
finite difference method and the Gauss elimination technique. The theoretical work covers heat flux
range from (200 to 1500) W/m2, Re range from 400 to 2000 an
If feminist philosophy in the context of feminist research focuses on how to produce an alternative knowledge and culture for women and forming anew awareness of their roles in the face of prevailing misconceptions then the topic of Islamic feminism is presented as a philosophical topic in the field of human knowledge to discuss how to produce an alternative knowledge of traditional knowledge prevailing in patriarchal societies to restore the balance of power and authority in the relationship between the sexes to create an effective feminist role in advocating for and defending womenś issues to achieve this Islamic feminism sought to establish an Islamic epistemology .
Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show More