Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 mm/rev and a depth of cut 0.4 mm was found to achieve lower surface roughness with, an increase in the cutting speed and feed rate with the increases of the surface roughness. In addition, an increase in the depth of cut was found to reduces the surface roughness. The outcome of this study showed that ANN is a versatile tool for prediction of surface roughness and may be easily extended with greater confidence to various metal cutting processes.
This study used a continuous photo-Fenton-like method to remediate textile effluent containing azo dyes especially direct blue 15 dye (DB15). A Eucalyptus leaf extract was used to create iron/copper nanoparticles supported on bentonite for use as catalysts (E@B-Fe/Cu-NPs). Two fixed-bed configurations were studied and compared. The first one involved mixing granular bentonite with E@B-Fe/Cu-NPs (GB- E@B-Fe/Cu-NPs), and the other examined the mixing of E@B-Fe/Cu-NPs with glass beads (glass beads-E@B-Fe/Cu-NPs) and filled to the fixed-bed column. Scanning electron microscopy (SEM), zeta potential, and atomic forces spectroscopy (AFM) techniques were used to characterize the obtained particles (NPs). The effect of flow rate and DB15 concent
... Show MoretA novel synthesis procedure is presented for preparing triethanolamine-treated graphene nanoplatelets(TEA-GNPs) with different specific areas (SSAs). Using ultrasonication, the covalently functionalizedTEA-GNPs with different weight concentrations and SSAs were dispersed in distilled water to prepareTEA-GNPs nanofluids. A simple direct coupling of GNPs with TEA molecules is implemented to synthesizestable water-based nanofluids. The effectiveness of the functionalization procedure was validated by thecharacterization and morphology tests, i.e., FTIR, Raman spectroscopy, EDS, and TEM. Thermal conduc-tivity, dispersion stability, and rheological properties were investigated. Using UV–vis spectrometer, ahighest dispersion stability of 0.876
... Show MoreA fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.
The Decision Making Process (DMP) is considered the vital from the point of view intellectuals. That is because of its effect on performance and the level of productivity of the workers in any organization. In the educational organization in particular, it plays a pivotal role in the technical, managerial and supervision fields. In addition to the productivity there was a great effect on the moral of the workers in all part of the organization, self respect and the problem solving approach to all work difficulties and challenges. All that leads to a better working environment where goals are achieved in a collaborative effort.
According t
... Show Moreعملية صناعة واتخاذ القرار في السياسة الخارجية للرئيس جورج والكر بوش
Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show MoreThis paper compare the accurecy of HF propagation prediction programs for HF circuits links between Iraq and different points world wide during August 2018 when solar cycle 24 (start 2009 end 2020) is at minimun activity and also find out the best communication mode used. The prediction programs like Voice of America Coverage Analysis Program (VOACAP) and ITU Recommendation RS 533 (REC533 ) had been used to generat HF circuit link parameters like Maximum Usable Frequency ( MUF) and Frequency of Transsmision (FOT) .Depending on the predicted parameters (data) , real radio contacts had been done using a radio transceiver from Icom model IC 7100 with 100W RF
... Show More