Preferred Language
Articles
/
alkej-736
Prediction of Surface Roughness after Turning of Duplex Stainless Steel (DSS)
...Show More Authors

Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 mm/rev and a depth of cut 0.4 mm was found to achieve lower surface roughness with,  an increase in the cutting speed and feed rate with the increases of the surface roughness. In addition, an increase in the depth of cut was found to reduces the surface roughness. The outcome of this study showed that ANN is a versatile tool for prediction of surface roughness and may be easily extended with greater confidence to various metal cutting processes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Prediction of DNA Binding Sites Bound to Specific Transcription Factors by the SVM Algorithm
...Show More Authors

In gene regulation, transcription factors (TFs) play a key function. It transmits genetic information from DNA to messenger RNA during the process of DNA transcription. During this step, the transcription factor binds to a segment of the DNA sequence known as Transcription Factor Binding Sites (TFBS). The goal of this study is to build a model that predicts whether or not a DNA binding site attaches to a certain transcription factor (TF). TFs are regulatory molecules that bind to particular sequence motifs in the gene to induce or restrict targeted gene transcription. Two classification methods will be used, which are support vector machine (SVM) and kernel logistic regression (KLR). Moreover, the KLR algorithm depends on another regress

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Mar 13 2017
Journal Name
Journal Of Baghdad College Of Dentistry
Computer Assisted Immunohistochemical Score Prediction Via Simplified Image Acquisition Technique
...Show More Authors

Background: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Reviews In Agricultural Science
Technological Advances in Soil Penetration Resistance Measurement and Prediction Algorithms
...Show More Authors

Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Effect of Laser Surface Treatment on Physical Properties of Composite Material (Al-B4C)
...Show More Authors

This work study the effect of laser surface heat treatment on physical properties (green density, density after sintering, theoretical density and porosity)of a composite material of an Al powder as a matrix with different percentage of B4C powder as additive material. This work was done by two stages: First stage: Production the maincomposite material which is contain Al powder with grain size 24μm as a matrix and B4C powder with grain size 50μm as additive with different weight percentage (5%,10%,15%,20%,25%,30%), and the powders Maxined for suitable time 15min, after that the mixture compacted with 2ton and sintered at 550C0. Second stage: Laser surface treatment was done for the productive composite material after sintering by usin

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Surface properties of heat treated with different durations of titanium alloy dental implants
...Show More Authors

Background: The surface properties of the titanium alloy plays a significant role in the bond of the dental implant with living bone and modification of the implant surface could enhance osseointegration. This study was aimed to investigate the effect of different durations of heat treatment on the surface properties of titanium alloy for dental implants. Materials and methods: Twenty disks of (Ti-6Al-4V) alloy were prepared. The sample was divided into four test groups to study the effect of different duration of heat treatment to the surface topography; surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples were investigated to evaluate the effect of different durations of

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of zirconia surface treatments on the shear bond strength of veneering ceramic
...Show More Authors

Background: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa

... Show More
View Publication Preview PDF