Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 mm/rev and a depth of cut 0.4 mm was found to achieve lower surface roughness with, an increase in the cutting speed and feed rate with the increases of the surface roughness. In addition, an increase in the depth of cut was found to reduces the surface roughness. The outcome of this study showed that ANN is a versatile tool for prediction of surface roughness and may be easily extended with greater confidence to various metal cutting processes.
The main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones
This paper demonstrates an experimental and numerical study on the behavior of reinforced concrete (RC) columns with longitudinal steel embedded tubes positioned at the center of the column cross-section. A total of 12 pin-ended square sectional columns of 150 × 150 mm having a total height of 1400 mm were investigated. The considered variables were the steel tube diameters of 29, 58, and 76 mm and the load eccentricity (0, 50, and 150) mm. Accordingly, these columns were divided into three groups (four columns in each group) depending on the load eccentricity (e) to column depth (h) ratio (e/h = 0, 1/3, and 1). For each group, one column was solid (reference), and the other three columns contained steel tubes with hollow rat
... Show MoreIn this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then cal
... Show MoreIn the present study, male albino mice were used to estimate the effects of titanium dioxide nanoparticles (TiO2) suspension used in two doses (150, 600 mg/kg) through intraperitoneal route. The results revealed a significant difference (p≤0.05) among the control and experimental groups in all haematological parameters, including a significant increase in White Blood Cell (W.B.C) count, Mean Cell Volume (MCV), Mean Cell Haemoglobin Concentration (MCHC), and Mean Cell Haemoglobin (MCH). Also, the results showed a significant decrease in Red Blood Cell (R.B.C.) count and Haemoglobin (Hb). Biochemical tests included AST and ALT and showed a significant elevation in all exposed groups, while ALP was
... Show MoreFire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20
In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably