Companies compete greatly with each other today, so they need to focus on innovation to develop their products and make them competitive. Lean product development is the ideal way to develop product, foster innovation, maximize value, and reduce time. Set-Based Concurrent Engineering (SBCE) is an approved lean product improvement mechanism that builds on the creation of a number of alternative designs at the subsystem level. These designs are simultaneously improved and tested, and the weaker choices are removed gradually until the optimum solution is reached finally. SBCE implementations have been extensively performed in the automotive industry and there are a few case studies in the aerospace industry. This research describe the use of trade-off curve as a lean tool to support SBCE process model in CONGA project, using NASA simulation software version 1.7c and CONGA demonstration program (DEMO program) to help designers and engineers to extract the design solution where it exists according to the customer requirement and to extract alternative nearest solutions from the previous project that meet customer requirement to achieve low noise engine at an aerospace company and also extract the infeasible region where the designers cannot make any prototype in this region before manufacturing process begin, that will lead to reducing rework, time and cost.
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical parame
... Show MoreDye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the was
... Show MoreTitanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended
use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical paramete
Anodic electrodeposition was used to synthesize a composite electrode of nanostructured manganese dioxide/carbon fiber (CF) galvanostatically. Different characterization results of the nanostructured MnO2 were obtained by varying the H2SO4 concentration and the current density. Field emission scanning electron microscopy, X‐ray diffraction, and atomic force microscopy were utilized to characterize the prepared composite electrodes. The best conditions were: 0.3 mA cm−2 current density and 0.64 M H2SO4 concentration. The electrosorption performance of the MnO
This study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse
... Show More