The invention relates to a coordinate measuring machine (CMM) for determining a measuring position of a probe. The AACMM isdepends on the robotkinematics (forward and reverse) in their measurementprinciple, i.e., using the AACMM links and joint angles todetermine the exact workspace or part coordinates. Hence, themeasurements are obtained using an AACMM will be extremely accurate and precise since that ismerely dependent on rigid structural parameters and the only source of measurement error is due to human operators. In this paper, a new AACMM design was proposed. The new AACMM design addresses common issues such as solving the complex kinematics, overcoming the workspace limitation, avoiding singularity, and eliminating the effects of design error by designing a new and compatible AACMM that will incorporate all affective design factors into consideration. Different types of design factors and limitations, which significantly affect the AACMM production fabrication processes, and ultimately.accuracy are given. Cost and time factors effects on the design and manufacturing are found to be the most significant. Two primary manufacturing techniques were used, both of which relied on rigors CAD/CAM iterations resulting in an entirely usable G-Code.Those methods are CNC and 3D printing, the most widely used methods in any industry. Nevertheless, accuracy and ergonomics factors must be considered for precise measurements. The design was validated through various methods, such as the use of finite element measurement techniques, to make sure that the design was structurally correct
Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreWith the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardw
... Show MoreThe Sliding Mode Control (SMC) has been among powerful control techniques increasingly. Much attention is paid to both theoretical and practical aspects of disciplines due to their distinctive characteristics such as insensitivity to bounded matched uncertainties, reduction of the order of sliding equations of motion, decoupling mechanical systems design. In the current study, two-link robot performance in the Classical SMC is enhanced via Adaptive Sliding Mode Controller (ASMC) despite uncertainty, external disturbance, and coulomb friction. The key idea is abstracted as follows: switching gains are depressed to the low allowable values, resulting in decreased chattering motion and control's efforts of the two-link robo
... Show MoreToxic dyes are commonly discharged into waste waters and dyes are extensively used in the textile industry so it is necessary to find out efficient and eco-friendly method for treating waste waters resulting from industrial effluences. To achieve this aim the fungus Trichoderma sp. is employed into two lines: first line was self – immobilized fungal pellets in (Czapek – Dox medium) to adsorbs two dyes crystal violet, congo red by concentrations 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 mg/L to both dyes, PH 2, room temperature with shaker in ( hrs.2,hrs.4,hrs.24) , by Uv- Visible spectrum . the removal efficiency of 0.05 mg/L crystal violet by Trichoderma sp was 96%. but there was no remova
... Show MoreA new Spectrophotometric method, is for individual and simultaneous determination of Ciprofloxacin hydrochloride(CIP) and Mebeverin hydrochloride(MEB) by the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of CIP and MEB in concentration range of (4-28μg/mL) by measuring the amplitude of peak- to- base line and the area under peak at selected spectrum intervals. The methods showed a reasonable precision and accuracy and have been applied to determine CIP and MEB in four different pharmaceutical preparations.
The interlaminar fracture toughness of polymer blends reinforced by glass fiber has
been investigated. Epoxy (EP), unsaturated polyester(UPE), polystyrene (PS),
polyurethane (PU) and their blends with different ratios (10%PS/90%EP),
(20%PS/80%EP), (20%PU/80%EP) and (20%PU/80%UPE) were chosen as a matrices A
sheet of composites were prepared using hand lay -up method, these sheet were cut as the
double cantilever beam (DCB) specimen to determine interlaminar fracture toughness of
these composites .Its found that, blending of EP,UPE with 20% of PU will improve the
interlaminar fracture toughness ,but the adding of 10% PS, 20%PS to EP will decrease
the interlaminar toughness of these composites.
Background: It may be an important prospective clinical use of manufacturing of porous implant for clinical situations, such as cases of limitation in bone height, low bone density .The small segment of porous implant an effective osseointegration allows increasing in contact area provided for small segmented porous provided by its surface configuration. This study was done to Fabricate porous titanium implants by powder technology, as well as the observation of removal torque values of porous titanium implants compared to smooth titanium implants. Materials and methods: Twenty porous titanium implants (3.2mm in diameter and 8mm in length) were manufactured by powder technology using commercially pure titanium powder of ≤75um part
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreFinding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.