Preferred Language
Articles
/
alkej-694
Optimization the Effect of Electrode Material Change on EDM Process Performance Using Taguchi Method

Electrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A Minitab software environment was used to adopt Taguchi method to analyze the effect of input on output parameters of EDM. The results of the present work showed that the best of MRR in copper and brass electrodes with (current 42 A, pulse on time 100 µs and pulse off time 25 µs) are (84.355×10-3 g/min) and (43.243×10-3 g/min) respectively, and the MRR predicted by Taguchi are (86.1751×10-3 g/min) in copper electrode by using the parameters with (current 10 A, pulse on time 200 µs and pulse off time 25 µs) and (43.2979×10-3 g/min) in brass electrode at current 42 A, pulse on time 100 µs, and pulse off time 25 µs. The lowest EWR occurs with a value of (1.4510×10-3 g/min) with (current 10 A, pulse on time 100 µs, pulse off time 4 µs) variables when using a copper electrode. The highest WR (2.602508) was found for the brass electrode with (current 24 A, pulse on time 200 µs, pulse off time 4 µs) variables.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Study the Effects of Machining Parameters on Surface Roughness for Free Form Surface Using Taguchi Method

The surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 13 2021
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Cutting Parameters for Milling Process of (4032) Al-Alloy using Taguchi-Based Grey Relational Analysis

The objective of this work is to study the influence of end milling cutting process parameters, tool material and geometry on multi-response outputs for 4032 Al-alloy. This can be done by proposing an approach that combines Taguchi method with grey relational analysis. Three cutting parameters have been selected (spindle speed, feed rate and cut depth) with three levels for each parameter. Three tools with different materials and geometry have been also used to design the experimental tests and runs based on matrix L9. The end milling process with several output characteristics is solved using a grey relational analysis. The results of analysis of variance (ANOVA) showed that the major influencing parameters on multi-objective response w

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
ptimization the Parameters of Magnetic Abrasive Process Using Taguchi Method to Improve the Surface Roughness

Abstract  

Magnetic abrasive finishing (MAF) process is one of non-traditional or advanced finishing methods which is suitable for different materials and produces high quality level of surface finish where it uses magnetic force as a machining pressure. A set of experimental tests was planned according to Taguchi orthogonal array (OA) L27 (36) with three levels and six input parameters. Experimental estimation and optimization of input parameters for MAF process for stainless steel type 316 plate work piece, six input parameters including amplitude of tooth pole, and number of cycle between teeth, current, cutting speed, working gap, and finishing time, were performed by design of experiment

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Friction Stir Welding Process Parameters of Dissimilar AA2024-T3 and AA7075-T73 Aluminum Alloys by Using Taguchi Method

The aim of present study is to determine the optimum parameters of friction stir welding process and known the most important parameter along with percentage contribution of each parameter which effect on tensile strength and joint efficiency of FS welded joint of  dissimilar aluminum alloys AA2024-T3 and AA7075-T73 of 3 mm thick plates by applied specific number of experiments using Taguchi method .AA2024 was placed on the advancing side and AA7075 on the retreating side. FSW was achieved under three different rotation speeds (898, 1200 and 1710) rpm, three different welding speeds (20, 45 and 69) mm\min , three different pin profiles (cylindrical, threaded cylindrical and cone) and tool tilt angle 2. Taguchi method w

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study on the Effect of Insertion of Copper Lessing Rings in Phase Change Material (PCM) on the Performance of Thermal Energy Storage Unit

Abstract

One of the most suitable materials to be used in latent heat thermal energy storage system (LHTES) are Phase change materials, but a problem of slow melting and solidification processes made many researchers focusing on how to improve their thermal properties. This experimental work concerned with the enhancing of thermal conductivity of phase change material. The enhancing method was by the addition of copper Lessing rings in phase change material (paraffin wax). The effect of diameter for the used rings was studied by using two different diameters (0.5 cm and 1cm). Also, three volumetric percentages of rings addition (3%, 6% and 10%) were tested for each diameter. The discharging process was done with

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 29 2018
Journal Name
Al-khwarizmi Engineering Journal
Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on

... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Studying and Modeling the Effect of Graphite Powder Mixing Electrical Discharge Machining on the Main Process Characteristics

Abstract

This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
International Journal Of Engineering And Advanced Technology (ijeat)
Optimization Process Parameters of Submerged Arc Welding Using Taguchi Method

Submerged arc welding (SAW) process is an essential metal joining processes in industry. The quality of weld is a very important working aspect for the manufacturing and construction industries, the challenges are made optimal process environment. Design of experimental using Taguchi method (L9 orthogonal array (OA)) considering three SAW parameter are (welding current, arc voltage and welding speed) and three levels (300-350-400 Amp. , 32-36-40 V and 26-28-30 cm/min). The study was done on SAW process parameters on the mechanical properties of steel type comply with (ASTM A516 grade 70). Signal to Noise ratio (S/N) was computed to calculate the optimal process parameters. Percentage contributions of each parameter are validated by using an

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 19 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Material Removal Rate and Temperature in Magnetic Abrasive Finishing Process for Stainless Steel 304

The effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p

... Show More
Crossref
View Publication Preview PDF