ان تصنيع رمال مطلية بأوكسيد الحديد من خلال ترسيب الجزيئات النانوية لذلك الاوكسيد على سطوح الرمال واستخدامها في الحاجز التفاعلي النفاذ لإزالة ايونات الكادميوم والنحاس من المياه الجوفية الملوثة الهدف الرئيسي للدراسة الحالية. تم توصيف بيانات الامتزاز نتيجة تفاعل المادة المازة مع المادة الممتزة قيد الدراسة بشكل جيد من خلال نموذج لانكمير والذي كان أفضل من نموذج فراندلش. لقد وجد ان اعلى قيم لقابلية الامتزاز باستخدام الرمال المطلية بأوكسيد الحديد وصلت الى 1.9181 و7.6425 ملغم/غم لكل من الكادميوم والنحاس على التوالي. اثبت برنامج COMSOL Multiphysics 3.5a قدرته على محاكاة والتنبؤ بانتقال الكادميوم والنحاس من خلال حاجز تفاعلي نفاذ ذو البعد الواحد والمكون من رمال مطلية بأوكسيد الحديد. أثبتت النتائج ان المادة المصنعة المستخدمة ضمن هذا الحاجز لها القدرة على تأخير انتقال الملوثات. لوحظ ان جذر معدل مجموع الأخطاء بين النتائج المتوقعة والمقاسة لا يتجاوز 0.121 وهذا يعني وجود توافق جيد بين تلك البيانات.
Many complexes of 3,5-dimethyl-1H-pyrazol-1-yl phenyl methanone with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were synthesized and characterized by FT-IR, UV/visible spectra, elemental analysis, room temperature magnetic susceptibility and molar conductivity. Cd(II) complex was expected to have tetrahedral structure while all the other complexes were expected to have an octahedral structure.
Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical tech
... Show MoreGreen nanotechnology is a thrilling and rising place of technology and generation that bracesthe ideas of inexperienced chemistry with ability advantages for sustainability, protection, andthe general protection from the race human. The inexperienced chemistry method introduces aproper technique for the production, processing, and alertness of much less dangerous chemicalsubstances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation intonanomaterials and the resultant bioactivities that pose very few dangerous outcomes for peopleand the environment. In the twenty-first century, nanotechnology has become a systematic
... Show MoreNaturally occurring radioactive materials (NORM) contaminated sites at Al-Rumaila Iraqi oil fields have been characterized as a part of soil remediation project. Activity of radium isotopes in contaminated soil have been determined using gamma spectrometer High Purity Germanium detector (HPGe) and found to be very high for Al-Markezia, Al-Qurainat degassing stations and storage area at Khadhir Almay region. The activity concentration of samples ranges from 6474.11±563.8 Bq/kg to 1232.5±60.9 Bq/kg with mean value of 3853.3 Bq/kg for 226Ra, 843.59±8.39 Bq/kg to 302.2±9.2 Bq/kg with mean value of 572.9 Bq/kg for 232Th and 294.31±18.56 Bq/kg to 156.64±18.1 Bq/kg with mean value of 225.5 for 40K. S
... Show MoreThis study aims to show the effectiveness of immobilization of Chlorella green algae biomass in the form of bead for the removal of lead ions from synthetic polluted water at various operational parameters such as pH (2–6), biosorbent dosage (0.5–20 g/L) and initial concentration (10–100 mg/L). More than 90 % removal efficiency was achieved. FTIR and SEM-EDX analysis of the biosorbent before and after sorption show differences in the functional groups on the adsorbent surface. Langmuir and Freundlich equilibrium isotherm, pseudo-first-order and pseudo-second-order kinetic models were applied to the experimental and results and show good conformity with Langmuir isotherm model and pseudo-second-order kinetic model with c
... Show MoreStaphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to form biofilm is considered as one of the most important virulence factors of coagulase negative staphylococci. There is only limited knowledge of the nature of S. haemolyticus biofilms. This study was aimed at evaluating the ability of S. haemolyticus strains to produce biofilm in the presence of copper oxide nanoparticles (CuONPs). The biological synthesis of nanoparticles is an environmentally friendly approach for large-scale production of nanoparticles. Copper oxide nanoparticles were produced in the current study from the S. haemolyticus viable cell filtrate. UV-visible (UV-Vis) spectroscopy, X-ray diffra
... Show MorePhotocatalyst composed of core/shell magnetic zincoxysulfide nanocomposite coated with sulfonated polyindole ([email protected]/SPID) has been prepared and used for simultaneous photocatalytic H2 production and Bisphenol A (BPA) degradation. XRD, FE-SEM, EDX, BET surface area, UV-vis DRS and VSM were used to characterize the synthesized nanocomposites. The photocatalytic performance was evaluated using batch reactor under visible light irradiation. The photocatalytic activity of [email protected]/SPID nanocomposite was revealed to exceed that of [email protected] nanocomposite due to the heterojunctions between SPID and [email protected] species. The results exhibited that the effect of BPA initial concentration was found to be effectual on the improvement
... Show MoreIn the present study, a total of 245 flour samples were collected from 49 mills on both sides of Baghdad city (Al- Karkh and Al- Resafa), during the period from 1/6 - 1/12/ 2015 to detect the prolportion of iron added to the flour samples. It is found that only 45% of mills produced flour contain the prescribed percentage of iron (30-60 ppm) while 51.9% of the mills produced flour at rate is less or much more than the prescribed percentage, while only 4.1% of the mills were not added iron to the flour.