The objective of this work is to investigate the performance of a conventional three phase induction motor supplied by unbalanced voltages. An effort to study the motor steady state performance under this disturbance is introduced. Using per phase equivalent circuit analysis with the concept of symmetrical components approach, the steady state performance is theoretically calculated. Also, a model for the induction motor with the MATLAB/Simulink SPS tools has been implemented and steady state results were obtained. Both results are compared and show good correlation as well. The simulation model is introduced to support and enhance electrical engineers with a complete understanding for the steady state performance of a fully loaded induction motor operating from unbalanced supply voltages.
The ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is d
... Show MoreAn optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To impro
... Show MoreThe prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
BACKGROUND:
The study of Terracotta in Mesopotamia is one of the important
technical topics that gave us valuable information ،whether from a
technical or cultural point of view
Of non-Muslim minorities In the Muslim community
Among the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS
... Show MoreIn modern hydraulic control systems, the trend in hydraulic power applications is to improve efficiency and performance. “Proportional valve” is generally applied to pressure, flow and directional-control valves which continuously convert a variable input signal into a smooth and proportional hydraulic output signal. It creates a variable resistance (orifice) upstream and downstream of a hydraulic actuator, and is meter in/meter out circuit and hence pressure drop, and power losses are inevitable. If velocity (position) feedback is used, flow pattern control is possible. Without aforementioned flow pattern, control is very “loose” and relies on “visual” feed back by the operator. At this point, we should examine how this valv
... Show More<span lang="EN-US">We are living in the 21<sup>st</sup> century, an era of acquiring necessity in one click. As we, all know that technology is continuously reviving to stay ahead of advancements taking place in this world of making things easier for mankind. Technology has been putting his part in introducing different projects as we have used the field programmable gate arrays (FPGAs) development board of low cost and programmable logic done by the new evolvable cyclone software is optimized for specific energy based on Altera Cyclone II (EP2C5T144) through which we can control the speed of any electronic device or any Motor Control IP product targeted for the fan and pump. Altera Cyclone FPGAs’ is a board thro
... Show MoreThe results show the inability to apply the Taylor rule within inflation and GDP Gaps because the monetary behave is elated from the Iraqi economy.
When applying the Taylor rule to exchange rate with the inflation and the output gap, the results do not match the nominal price announced by the central thing, which proves the lack of commitment by the Central Bank by using the Taylor rule, whether short-run interest rate or exchange rate (Nominal Anchor), so it did not stay to the Iraqi Central Bank only using the principle of Taylor with the expected inflation rate below the level of output (Macro activity) for the separation of monetary behavior from the real one o
... Show More