Preferred Language
Articles
/
alkej-678
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
...Show More Authors

Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.

Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are further classified into either malignant or benign. The collected 20 breast cancer features are utilized to test the performance of the proposed classification system with Leave-One-Out (LOO) cross validation and Synthetic Minority Over-Sampling Technique (SMOTE) to balance the classes. Furthermore, correlation-based feature selection (CFS) was employed in an exploratory analysis to find the best features for the 2-stage classification system.

Results: Classification accuracy of 94% for stage-1 and 100% for stage-2was achieved with a Naïve Bayesclassifier which outperformed other three methods. In addition, CFS selected small subset of features as being the best five features out of the all 20 features for both stage-1 and stage-2.

Conclusion: We achieved a high classification accuracy which is promising to help improve the early diagnosis of breast tumor. The outcome of this study also shows the importance of CA15-3protein in saliva and blood as well as carcinoembryonic antigen level and total protein in blood, and Estrogen hormone level in saliva, for predicting breast tumors.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (22)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun May 10 2020
Journal Name
Baghdad Science Journal
Characterization of Mannitol Fermenter and Salt Tolerant Staphylococci from Breast Tumor Biopsies of Iraqi Women
...Show More Authors

The emergence of staphylococci, either coagulase negative (CNS) or coagulase positive (CPS), as important human pathogens has implied that reliable methods for their identification are of large significance in understanding the diseases caused by them. The identification and characterization of staphylococci from biopsies taken from human breast tumors is reported here. Out of 32 tissue biopsies, a total of 12 suspected staphylococci grew on mannitol salt agar (MSA) medium, including 7 fermenters and 5 non-fermenter staphylococci based on traditional laboratory methods. Polymerase chain reaction (PCR) successfully identified seven isolates at the genus level as methicillin resistant Staphylococcus spp. by targeting a common region of the me

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Dec 31 2018
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Dyslipidemia and CA15-3 serum level in Iraqi Women with Breast Tumor: A Comparative Study
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 03 2023
Journal Name
The Egyptian Journal Of Hospital Medicine
High Tumor Levels of Ki-67, VEGF and Endostatin Are Associated with Progression of Breast Cancer in Iraqi Women
...Show More Authors

Background: Breast cancer (BC) is the most widespread cancer among women worldwide. Its incidence and mortality rates have risen in the previous three decades as a result of changes in risk factor profiles, improved cancer registry, and cancer detection. Objective: The study's goals were to establish if Ki-67 could be used as a potential marker in serum of cancer disease patients as well as their interaction with vascular endothelial growth factor (VEGF) and ES in various stages of breast cancer to assess their function in the progression of BC. Materials and Methods: The levels of Ki-67, VEGF and endostatin (ES) in serum were assessed by commercial enzyme linked immunosorbent assay (ELISA) kits in 60 women diagnosed with breast cancer

... Show More
Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
The Egyptian Journal Of Hospital Medicine
High Tumor Levels of Ki-67, VEGF and Endostatin Are Associated with Progression of Breast Cancer in Iraqi Women
...Show More Authors

View Publication
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
The Influence of Obesity and IL-6 on Infertile Iraqi Women with COVID-19 Complications
...Show More Authors

Infertility is one of the types of diseases that occur in the reproductive system. Obesity is a state that can be occurred due to excessive fats, the progression in obesity stage results in a change in adipose tissue and the development of chronic inflammation, endocrine glands disorders and women’s reproductive system, and also increase the infection with covid-19. The study aimed to investigate the effect of the obesity, lipid-profile, and IL-6 on hormones-dysregulation in infertile-women with COVID-19 complications. The current study included 70 samples: 50 infertility-women-with-covid-19-infected, 20 healthy-women/control, the ages of both patients and healthy subjects were selected within the range 18-34 years. Levels of FBS, LH,

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
Classification of Iraqi Children According to Their Nutritional Status Using Fuzzy Logic
...Show More Authors

In this paper, we build a fuzzy classification system for classifying the nutritional status of children under 5 years old in Iraq using the Mamdani method based on input variables such as weight and height to determine the nutritional status of the child. Also, Classifying the nutritional status faces a difficult challenge in the medical field due to uncertainty and ambiguity in the variables and attributes that determine the categories of nutritional status for children, which are relied upon in medical diagnosis to determine the types of malnutrition problems and identify the categories or groups suffering from malnutrition to determine the risks faced by each group or category of children. Malnutrition in children is one of the most

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 26 2019
Journal Name
Journal Of Contemporary Medical Sciences
Breast Cancer Decisive Parameters for Iraqi Women via Data Mining Techniques
...Show More Authors

Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Research on Emotion Classification Based on Multi-modal Fusion
...Show More Authors

Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Jan 04 2015
Journal Name
Journal Of Educational And Psychological Researches
Posttraumatic growth in Iraqi women who have lost close relatives
...Show More Authors

During recent decades, hundreds of thousands of Iraqis lost their lives as a result of wars, economic blockade, or acts of violence and terrorism. The loss of a family member, especially husband makes women suddenly bears full responsibility for the family. Lost could impose new changes in psychological, social, and economical roles. These changes usually combine with the negative effects aftermath the lost trauma. Some of the reports in Iraq showed there were increased and huge numbers of widows and orphans. This study aimed to identify the aspects of Posttraumatic Growth (PTG) in Iraq women who lost their close relatives (especially husbands). 52 of Iraqi women who lost their husband and 49 women who experienced other traumatic events

... Show More
View Publication Preview PDF