Preferred Language
Articles
/
alkej-674
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samples of experimental data were used, including nineteen to train the network. Moreover six other experimental tests were implemented to test the network. The study concludes that ANN was a dependable and precise method for predicting machining parameters in CNC turning operation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 29 2018
Journal Name
International Journal Of Women's Health And Reproduction Sciences
Prediction of Placenta Accreta Using Hyperglycosylated Human Chorionic Gonadotropin
...Show More Authors

Objectives: Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG. In addition, it has a different oligosaccharide structure compared to the regular hCG and promotes the invasion and differentiation of peripheral cytotrophoblast. This study aimed to measure hyperglycosylated hCG as a predictor in the diagnosis of placenta accreta. Materials and Methods: In general, 90 pregnant women were involved in this case-control study among which, 30 ladies (control group) were pregnant within the gestational age of ≥36 weeks with at least one previous caesarean section and a normal sited placenta in transabdominal ultrasound (TAU). The other 60 pregnant women (case

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 03 2019
Journal Name
Eastern-european Journal Of Enterprise Technologies
Prediction of spot welding parameters using fuzzy logic controlling
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Civil Engineering Journal
Prediction of Urban Spatial Changes Pattern Using Markov Chain
...Show More Authors

Urban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to ana

... Show More
View Publication
Scopus (22)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Calculating the Transport Density Index from Some of the Productivity Indicators for Railway Lines by Using Neural Networks
...Show More Authors

The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Engineering And Applied Sciences
MODELING THE TRANSPORT OF CONTAMINANT BY WASHING PROCESS IN THE SANDY SOIL
...Show More Authors

The aim of this study is modeling the transport of industrial wastewater in sandy soil by using finite element method. A washing technique was used to remove the industrial wastewater from the soil. The washing technique applied with an efficient hydraulic gradient to help in transport of contaminant mass by advection. Also, the mass transport equation used in modeling the transport of industrial wastewater from soil includes the sorption and chemical reactions. The sandy soil samples obtained from Al-Najaf Governorate/Iraq. The wastewater contaminant was obtained from Al- Musyiebelectricity power plant. The soil samples were synthetically contaminated with four percentages of 10, 20, 30 and 40% of the contaminant and these percentages calc

... Show More
Publication Date
Wed Sep 30 2020
Journal Name
Cfd Letters
Numerical Analysis for Solar Panel Subjected with an External Force to Overcome Adhesive Force in Desert Areas
...Show More Authors

View Publication
Scopus (14)
Crossref (11)
Scopus Crossref
Publication Date
Thu Jan 04 2024
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Impact of Performance Auditing Process Pursuant to the Programs and Policies Guide in improving the health insurance Prosperity: applied research in the Iraqi General Insurance Company
...Show More Authors

Abstract

              The research’s goal lies in demonstrating the impact of the Federal Financial Supervision Endowment through the process of auditing the performance of the entities subject to its audit as to improve the performance of these entities, especially if the performance audit method is one of the newly applied methods that are compatible with the standards issued by the International Organization of Financial Supervision and Accounting Institutions which is the method of auditing performance according to the performance evaluation guide for programs and policies issued by the Federal Office of Financial Supervision.

 T

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Explainable Artificial Intelligence In The Digital Sustainability Administration
Artificial Intelligence and Trends Using in Sustainability Audit: A Bibliometric Analysis
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Conceptual Service Level Agreement Mechanism to Minimize the SLA Violation with SLA Negotiation Process in Cloud Computing Environment
...Show More Authors

Online service is used to be as Pay-Per-Use in Cloud computing. Service user need not be in a long time contract with cloud service providers. Service level agreements (SLAs) are understandings marked between a cloud service providers and others, for example, a service user, intermediary operator, or observing operators. Since cloud computing is an ongoing technology giving numerous services to basic business applications and adaptable systems to manage online agreements are significant. SLA maintains the quality-of-service to the cloud user. If service provider fails to maintain the required service SLA is considered to be SLA violated. The main aim is to minimize the SLA violations for maintain the QoS of their cloud users. In this res

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More