Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue test showed that improvement in fatigue limit, where the highest fatigue limit was obtained at (1mm feed, 1200rpm speed) in burnishing process which was (169 Mpa). The hardness results, showed increasing feed and speed values lead to increasing the hardness. The burnishing process reduces surface roughness by producing accurate and better surface finish. The best surface fineness of metal at (1mm feed and 1200 rpm speed) was 0.11 μm.
Objective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further
... Show MoreBackground: Polymers are very rarely used in their form. These modifications are carried out in order to improve the properties of polymers.Recently silver have been used successfully as antimicrobial (medical and dental) biomaterials that can prevent caries and infection of implants Purposes: The aim of the present in vitro study is to evaluate the effect of addition of silver nitrate to acrylic resin in different concentrationsthrough several tests part of these are: The effect of this additive on impact strength, transverse strength, and tensile strength of AgNO3 – loaded resin, and to assess any effect of addition of silver nitrate on coloration of acrylic resin. Materials and methods: Different concentrations of silver nitrate
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreIn this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreThe aim of this work is studying the binary system ??'??? Ni?)with two ratios (y=36,80) by using casting method for preparing the samples.Magnetic and Mechanical properties have been studidt different httrea^nttem^rature.All the alloys were found a ferromagnetic behavior and sensitive to the heat treatment. Best properties were found at the heat treatment 1100 C°.A significant different results were found above 1100C° for lower magnetic and mechanical values. This is possibly due to the change on the degree of magnetic moment orders, in which most of the moments are started to remove from coupled ferromagnetically.?
The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined. There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements. The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more accurate t
... Show MoreIn this study three inorganic nano additives, namely; CaCO3, Al2O3 and SiO2 were used to prepare nanocomposites of unsaturated polyester in order to modify their mechanical properties, i.e. tensile strength, elongation, impact and hardness. The results indicated that all the three additives were effective to improve the mechanical properties up to 4% by weight. The effectiveness of them follows the order : CaCO3 > Al2O3 > SiO2 This is due to their particle size in which CaCO3 (13nm), Al2O3 (20-30nm) and SiO2 (15-20nm).
The composites were manufactured and study the effect of addition of filler (nanoparticles SiO2 treated with silane) at different weight ratios (1, 2, 3, 4 and 5) %, on electrical, mechanical and thermal properties. Materials were mixed with each other using an ultrasound, and then pour the mixture into the molds to suit all measurements. The electrical characteristics were studied within a range of frequencies (50-1M) Hz at room temperature, where the best results were shown at the fill ratio (1%), and thermal properties at (X=3 %), the mechanical properties at the filler ratio (2%).