Preferred Language
Articles
/
alkej-640
Wearable Detection Systems for Epileptic Seizure: A review
...Show More Authors

The seizure epilepsy is risky because it happens randomly and leads to death in some cases. The standard epileptic seizures monitoring system involves video/EEG (electro-encephalography), which bothers the patient, as EEG electrodes are attached to the patient’s head.

Seriously, helping or alerting the patient before the seizure is one of the issue that attracts the researchers and designers attention. So that there are spectrums of portable seizure detection systems available in markets which are based on non-EEG signal.

The aim of this article is to provide a literature survey for the latest articles that cover many issues in the field of designing portable real-time seizure detection that includes the use of multiple body signals, new algorithm methods, and detection devices that are commercially available.

As a result, the reviewing process shows that there are many research articles that have covered wearable seizure detection systems that based on body signals. The more effective monitoring and detection seizure system is the system that uses multi-body signals, is highly comfortable and has low power consumption.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 05 2025
Journal Name
Science Journal Of University Of Zakho
DETECTION AND RECOGNITION OF IRAQI LICENSE PLATES USING CONVOLUTIONAL NEURAL NETWORKS
...Show More Authors

Due to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 14 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Detection of Granulocyte Chemotactic Protein 2 in Serum of Periodontitis Patients
...Show More Authors

Background: Chronic periodontitis defined as “an infectious inflammatory disease within supporting tissues of the teeth, progressive attachment loss and bone loss". Aggressive periodontitis is rare which in most cases manifest themselves clinically during youth. It characterized by rapid rate of disease progression .Pro-inflammatory chemokines organized inflammatory responses. Granulocyte chemotactic protein 2 is involved in neutrophil gathering and movement. The purpose of the study is to detect serum of Granulocyte Chemotactic Protein 2 and correlate to periodontal condition in patients with chronic periodontitis, Aggressive periodontitis and Healthy Control subjects and measurement the count of neutrophils for the studied groups. S

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Malaysian Journal Of Medicine & Health Sciences
Detection of Iron and Ferritin in Diabetes Mellitus Type 2 Patients
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design The Modified Multi Practical Swarm Optimization To Enhance Fraud Detection
...Show More Authors

     Financial fraud remains an ever-increasing problem in the financial industry with numerous consequences. The detection of fraudulent online transactions via credit cards has always been done using data mining (DM) techniques. However, fraud detection on credit card transactions (CCTs), which on its own, is a DM problem, has become a serious challenge because of two major reasons, (i) the frequent changes in the pattern of normal and fraudulent online activities, and (ii) the skewed nature of credit card fraud datasets. The detection of fraudulent CCTs mainly depends on the data sampling approach. This paper proposes a combined SVM- MPSO-MMPSO technique for credit card fraud detection. The dataset of CCTs which co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 21 2020
Journal Name
Baghdad Science Journal
Detection of Aflatoxin B1 among Early and Middle Childhood Iraqi Patients
...Show More Authors

      The study was conducted for the detection of Aflatoxin B1(AFB1) in the serum and urine of 42 early and middle childhood patients (26 male and  16 female ) with renal function disease, liver function disease, in additional to atrophy in the growth and other symptoms depending on the information within consent obtained from each patient, in addition to 8 children, apparently healthy, as  the control. The technique of HPLC was used for the detection of AFB1 from all samples. The results showed that out of 42 patient children, 19 (45.2%) gave positive detection of AFB1 in the serum among all age groups patients with a mean of 0.88 ng/ml and a range of (0.12-3.04) ng/ml. This was compared with the cont

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Enhancement of the Detection of the TCP SYN Flooding (DDoS) Attack
...Show More Authors

The major of DDoS attacks use TCP protocol and the TCP SYN flooding attack is the most common one among them. The SYN Cookie mechanism is used to defend against the TCP SYN flooding attack. It is an effective defense, but it has a disadvantage of high calculations and it doesn’t differentiate spoofed packets from legitimate packets. Therefore, filtering the spoofed packet can effectively enhance the SYN Cookie activity. Hop Count Filtering (HCF) is another mechanism used at the server side to filter spoofed packets. This mechanism has a drawback of being not a perfect and final solution in defending against the TCP SYN flooding attack. An enhanced mechanism of Integrating and combining the SYN Cookie with Hop Count Filtering (HCF) mech

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu

... Show More
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Arabic Characters Recognition by Edge Detection Using Connected Component Contour(CO3)
...Show More Authors

  In the present paper, Arabic Character Recognition  Edge detection method based on contour and connected components  is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content.         The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Detection of Some Protozoan Parasites That Infect the Human Gastrointestinal Tract
...Show More Authors

Stool speeimens were collected from pati nts who presented for various medical c:omplaints  in out patien.t Laboratories (The Central Health  Laboratories  /  Baghdad,). Every ,$pecim-en  wa:s  examined  by Conventional   m jcroscopic  exatninatitnl  (CME) ·and  te.§t d,  by  IgG­ ELISA kit.

Antibody against d1e Entamoeba histolylica, det cted  by ELISA, has ·the potential  to  become a vah,mble adjunct  to blood diagn9stics and make it  more affective, .although there is no repJacement fo'e the

rp.iorosGopicex

... Show More
View Publication Preview PDF