Preferred Language
Articles
/
alkej-623
Reduction of the error in the hardware neural network
...Show More Authors

Specialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give an optimal result in the output with a low cost.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Deterioration Model for Sewer Network Asset Management in Baghdad City (case study Zeppelin line)
...Show More Authors

Asset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 14 2025
Journal Name
South Eastern European Journal Of Public Health
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre

... Show More
View Publication
Crossref
Publication Date
Fri Oct 31 2025
Journal Name
Mathematical Modelling Of Engineering Problems
Heterogeneous Traffic Management in SDN-Enabled Data Center Network Using Machine Learning-SPIKE Model
...Show More Authors

Software-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they accou

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Oct 05 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval

Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN

... Show More
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The Impact of Students Dropout on Human Development in Iraq For Period ( 2001 ــ 2011 )
...Show More Authors

Abstraet

Students dropout from the Education has a negative phenomena on individual and society and even on different aspects of life especially on the economic aspect , Thus our research tries studying and analyzing the relation between the size of dropout and human development level in Iraq and as (research sample) the first decade of this century as a studying period, the study includes the dropout in Secondary schools and depending the formal records as a main source to evaluate the size of this problem in Iraq , which shows an increase in the size of dropout in this period in comparison with the last decades of the twentieth century, this produces a negative effect on human developme

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An adaptive neural control methodology design for dynamics mobile robot
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Thesis
User Authentication Based on Keystroke Dynamics Using Artificial Neural Networks
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t

... Show More