Preferred Language
Articles
/
alkej-620
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
...Show More Authors

Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .

                In this paper  a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering  and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet denoising stage . The choice of the threshold estimation is carried out by analyzing the statistical parameters of the wavelet sub band coefficients like standard deviation, arithmetic mean and geometrical mean . The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by this method .

Experimental results on test image by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR). Here, to prove the efficiency of this method in image restoration , we have compared this with various restoration  methods like Wiener filter alone and inverse filter.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Implementation of Neural Control for Continuous Stirred Tank Reactor (CSTR)
...Show More Authors

In this paper a dynamic behavior and control of  a jacketed continuous stirred tank reactor (CSTR)  is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.

The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.

The results s

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Design & Implementation of High Switching & Low Phase Noise Frequency Synthesizer
...Show More Authors

This research  describes the design & implementation of frequency synthesizer using single loop Phase lock loop with the following specifications: Frequency range (1.5 – 2.75) GHz,Step size (1 MHz), Switching time 36.4 µs, & phase noise @10 kHz = -92dBc & spurious -100 dBc

  The development in I.C. technology provide the simplicity in the design of frequency synthesizer because it implements the phase frequency detector(PFD) , prescalar &  reference divider in single chip. Therefore our system consists of  a single chip contains (low phase noise PFD, charge pump, prescalar  & reference divider), voltage controlled oscillator , loop filter & reference oscillator. The single chip

... Show More
View Publication Preview PDF
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some of reliability and Hazard estimation methods for Rayleigh logarithmic distribution using simulation with application
...Show More Authors

The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.

In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
A Comparison between Ericson's Formulae Results and Experimental Data Using New Formulae of Single Particle Level Density
...Show More Authors

The partial level density PLD of pre-equilibrium reactions that are described by Ericson’s formula has been studied using different formulae of single particle level density . The parameter  was used from the equidistant spacing model (ESM) model and the non- equidistant spacing model (non-ESM) and another formula of  are derived from the relation between  and level density parameter . The formulae used to derive  are the Roher formula, Egidy formula, Yukawa formula, and Thomas –Fermi formula. The partial level density results that depend on  from the Thomas-Fermi formula show a good agreement with the experimental data.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Modified BFGS Update (H-Version) Based on the Determinant Property of Inverse of Hessian Matrix for Unconstrained Optimization
...Show More Authors

The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never  approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning
...Show More Authors

This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System
...Show More Authors

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jul 24 2018
Journal Name
Sensors
Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees
...Show More Authors

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa

... Show More
View Publication
Crossref (25)
Clarivate Crossref
Publication Date
Tue Aug 06 2013
Journal Name
Robotica
Function approximation technique-based adaptive virtual decomposition control for a serial-chain manipulator
...Show More Authors
SUMMARY<p>The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr</p> ... Show More
View Publication
Scopus (27)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (36)
Crossref (32)
Scopus Clarivate Crossref