The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without tracking system (case 2). The experimental results showed that the average solar radiation falling on the PTSC prototype in the two cases during the same time was 854 and 701 watt/m2, respectively, which means an increase in the solar radiation about 21.8 % when using tracking system. It was found that the average useful heat gain output of solar collector was equal to (376.2, 252.6 watt) for the two cases, respectively, so there was an increase of about 48.9 % when using the tracking system. Also, the average thermal efficiency of the PTSC was found to be (20.7, 26.5 %) for the two cases, respectively, which means an increase in the average efficiency by 28% with use of tracking system compared to the fixed case.
This paper presents the motion programming and control of omni-directional mobile robot through the process of building and programming a small robotic platform with secondary design criteria of modularity and simplified control. This is accomplished by combining the positive aspects of several different robotics platform ideas. The platform is shaped like an equilateral triangle with a servo motor, sensors, and omni-wheel, controlled by a PIC microcontroller.
In this work the kinematics, inverse kinematics and dynamic module for the platform is derived. Two search algorithms (the wall-following search and the “most-open-area” search) is designed, tested, and analyzed experimentally.
In this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.
This paper presents a control system to make the robotic hand mimic human hand motion in real time and offline mode. The human hand tracking system is a wearable sensing arm (potentiometers) used to determine the position in space and to sense the grasping task of human hand. The maskable sensing arm was designed with same geometrical arrangement of robotic hand that needs to be controlled. The control software of a robot was implemented using Visual Basic and supported with graphical user interface (GUI). The control algorithm depends on joint to joint mapping method to match between the motions at each joint of portable sensing arm with corresponding joint of a robot in order to make the robot mimic the motion.
ABSTRACT
This research aim to measure the critical success factors for total quality management applications, in order to know the key and important role played by these factors at applying the total quality management through a comparative study conducted in a number of a private colleges.
The research problem posed a set of questions, the most important ones are: Are the colleges (sample of research) aware of the critical success factors at applying the total quality management? What is the availability of the critical success factors at the work of the colleges (sample of research)?
What are the critical success factors in the work of the researc
... Show MoreNowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show MoreThis research include design and implementation of an Iraqi cities database using spatial data structure for storing data in two or more dimension called k-d tree .The proposed system should allow records to be inserted, deleted and searched by name or coordinate. All the programming of the proposed system written using Delphi ver. 7 and performed on personal computer (Intel core i3).
The operation and management of water resources projects have direct and significant effects on the optimum use of water. Artificial intelligence techniques are a new tool used to help in making optimized decisions, based on knowledge bases in the planning, implementation, operation and management of projects as well as controlling flowing water quantities to prevent flooding and storage of excess water and use it during drought.
In this research, an Expert System was designed for operating and managing the system of AthTharthar Lake (ESSTAR). It was applied for all expected conditions of flow, including the cases of drought, normal flow, and during floods. Moreover, the cases of hypothetical op
... Show MoreCold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t
Diode laser technology is well established for biomedicine applications which demand high-power pulse-wave. They are extensively utilized from medical imaging and testing to surgical therapies and the latest aesthetic processes. For medical therapeutic practices, diode lasers have become the ideal laser source for this particular purpose. In the last previous years, semiconductor laser technology has evolved to produce high-repetitions rate near-infrared pulsed lasers diodes that are dependable, low-cost, portable, and small-weight, about few grams. In this paper, we review the recent development and demonstration of diode laser devices for biomedical applications recorded in the latest years taking into account the power, wavelength, and p
... Show More