The design and implementation of an active router architecture that enables flexible network programmability based on so-called "user components" will be presents. This active router is designed to provide maximum flexibility for the development of future network functionality and services. The designed router concentrated mainly on the use of Windows Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service composition scheme which enables flexible programmability through integration of user components into the router's data path. Also an extended program that creates and then injects data packets into the network stack of the testing machine will be proposed, we will call this program the packet generator/injector (PGI). Finally, the success of the node architecture and its prototype implementation is evaluated by means of a few practical applications.
Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Succinic acid is an essential base ingredient for manufacturing various industrial chemicals. Succinic acid has been acknowledged as one of the most significant bio based building block chemicals. Rapid demand for succinic acid has been noticed in the last 10 years. The production methods and mechanisms developed. Hence, these techniques and operations need to be revised. Recently, an omnibus rule for developing succinic acid is to find renewable carbohydrate Feedstocks. The sustainability of the resource is crucial to disintegrate the massive use of petroleum based-production. Accordingly, systematically reviewing the latest findings of bacterial production and related fermentation methods is critical. Therefore, this paper aims to stud
... Show MoreVehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show MoreThree N-(hydroxylphenyl) dimethylmaleimides were directly prepared in good yields (81-86)% from the reaction of dimethylmaleic anhydride with amino phenols. The prepared imides were esterified to the corresponding benzoates, methacrylates and cinnamates via their reaction with different acid chlorides in the presence of triethylamine. The prepared esters were tested as plasticizers for PVC via preparing of thirty six samples of PVC with the prepared esters in certain weight ratio followed by recording their softening points. Comparison the results with the universal plasticizers for PVC (DOP) and (DBP) indicated that the prepared esters in general have high plasticizing efficiency.
Abstract
The aim of the current research is to identify the level of administrative applications of expert systems in educational leadership departments in light of the systems approach. To achieve the objectives of the research, the descriptive-analytical and survey method was adopted. The results showed that the level of availability of the knowledge base for expert systems in educational leadership departments (as inputs) was low. The level of availability of resources and software for expert systems in educational leadership departments (as transformational processes) came to be low, as well as the level of availability of the user interface for expert systems in educational leadership departments (as outputs
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreWe report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker human epidermal growth factor receptor 2 (HER2), and zinc(II) protoporphyrin IX (ZnPP) to combine imaging, targeting and therapy within one nanostructure. Colloidal PbS QDs were synthesized in aqueous solution with a nanocrystal diameter of ∼5 nm and photoluminescence emission in the near infrared wavelength range. The ZHER2:432 affibody, mutated through the introduction of two cysteine residues at the C-terminus (
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for