In the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means the indication of presence of the damage. The direct comparison gives an indication of the damage but the location of the damage, is not detected. The method based on changes in the dynamics characteristics of the beam structures are examined and evaluated for damage scenarios. The results of the analysis indicate that the residual error method performs well in detecting, locating and quantifying damage in single and multiple damage scenarios.
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show More
This work focuses on the implementation of interfaces for human machine interaction (HMI) for control and monitor of automatic production line. The automatic production line which can performance feeding, transportation, sorting functions.
The objectives of this work are implemented two SCADA/HMI system using two different software. TIA portal software was used to build HMI, alarm, and trends in touch panel which are helped the operator to control and monitor the production line. LabVIEW software was used to build HMI and trends on the computer screen and was linked with Micros
... Show MoreThe present study aimed at identifying the effectiveness of Macaton method in improving some sensory and cognitive skills in autistic children. In order to achieve the aims of the study, the researcher used the experimental method. The present study sample was (10) children whose ages ranged between (7-10) years and were diagnosed medically with autism disorder. The researcher randomly selected the sample and divided it into two groups: the first group consisted of (5) children representing the experimental group, and (5) children representing the control group after extracting the equivalence between the two groups in terms of age, intelligence, economic and social level and the degree of communication. The program was implemented for t
... Show MoreThe purpose of this work is to concurrently estimate the UVvisible spectra of binary combinations of piroxicam and mefenamic acid using the chemometric approach. To create the model, spectral data from 73 samples (with wavelengths between 200 and 400 nm) were employed. A two-layer artificial neural network model was created, with two neurons in the output layer and fourteen neurons in the hidden layer. The model was trained to simulate the concentrations and spectra of piroxicam and mefenamic acid. For piroxicam and mefenamic acid, respectively, the Levenberg-Marquardt algorithm with feed-forward back-propagation learning produced root mean square errors of prediction of 0.1679 μg/mL and 0.1154 μg/mL, with coefficients of determination of
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show More