In the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means the indication of presence of the damage. The direct comparison gives an indication of the damage but the location of the damage, is not detected. The method based on changes in the dynamics characteristics of the beam structures are examined and evaluated for damage scenarios. The results of the analysis indicate that the residual error method performs well in detecting, locating and quantifying damage in single and multiple damage scenarios.
Pathological blood clot in blood vessels, which often leads to cardiovascular diseases, are one of the most common causes of death in humans. Therefore, enzymatic therapy to degrade blood clots is vital. To achieve this goal, bromelain was immobilized and used for the biodegradation of blood clots. Bromelain was extracted from the pineapple fruit pulp (Ananas comosus) and purified by ion exchange chromatography after precipitation with ammonium sulphate (0-80 %), resulting in a yield of 70%, purification fold of 1.42, and a specific activity of 1175 U/mg. Bromelain was covalently immobilized on functionalized multi-walled carbon nanotubes (MWCNT), with an enzyme loading of 71.35%. The results of the characterization of free and immobilized
... Show MoreBackground: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreAn Indirect simple sensitive and applicable spectrofluorometric method has been developed for the determination of Cefotaxime Sodium (CEF), ciprofloxacin Hydrochloride (CIP) and Famotidine (FAM) using reaction system bromate-bromide and acriflavine (AF) as fluorescent dye. The method is based on the oxidation of drugs with known excess bromate-bromide mixture in acidic medium and subsequent determination of unreacted oxidant by quenching fluorescence of AF. Fluorescence intensity of residual AF was measured at 528 nm after excitation at 402 nm. The fluorescence-concentration plots were rectilinear over the ranges 0.1-3.0, 0.05-2.6 and 0.1-3.8 µg ml-1 with lower detection limits of 0.013, 0.018 and 0.021 µg ml-1 an
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.