The primary objective of this study was to identify the mechanisms for the development and propagation of longitudinal cracks that initiate at the surface of composite pavement. In this study the finite element program ANSYS version (5.4) was used and the model worked out using this program has the ability to analyze a composite pavement structure of different layer properties. Also, the aim of this study was modeling and analyzing of the composite pavement structure with the physical presence of crack induced in concrete underlying layer. The results obtained indicates that increasing the thickness of the asphalt layer tends to decrease the stress intensity factor, which may be attributed to the rapidly decrease of horizontal tensile stress in the asphalt layer. The cracks initiate at the surface due to high vertical stress and shear stress from wheel loads tends to propagate downward due tensile stress generated at the bottom of the asphalt layer or near crack tip, and the whole process occur at the same location of the existing cracks in underlying concrete layer rather than travel up from existing crack. As the load position varies from the crack zone, this result in tensile stresses or tension at the crack tip, leading to increase the stress intensity factor and intern result in crack propagation further into the depth of the pavement.
A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode
... Show MoreIn this work, the copper metal was treated using Nd:YAG laser with energy 1Joul to enhance corrosion resistance and improve surface properties. The copper metal has many applications in industry as well as water, oil and gas pipes. The same conditions, (laser power density, scan speed, distance between paths, medium gas-air) were applied in the laser surface treatment, After laser treatment, the samples microstructures were investigated using optical microscope (OM) to examine micro structural changes due to laser irradiation. Specimen surfaces were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), macro hardness, and corrosion test before and after laser treatment to
... Show MoreSKF Sami I. Jafar, Mohammad J. Kadhim, Engineering and Technology Journal, 2018 - Cited by 4
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Background: Polymer surfaces usually present problems in bonding and finishing due to their low hydrophilicity. The aim of this study is to investigate the effect of plasma treatment with the use of two types of gases (oxygen and argon) on surface roughness, and chemical surface properties of acrylic resin denture base polymer material. Materials and Methods: Three heat cured acrylic resin specimens of (2*8*30 mm) dimensions were prepared for each test carried out in this study. Two tests were conducted, surface roughness test and chemical surface analysis test. Results: Application of plasma treatment increased surface roughness for both oxygen and argon plasma treated acrylic resin specimen groups compared with control untreated group,
... Show MoreThe city is a built-up urban space and multifunctional structures that ensure safety, health and the best shelter for humans. All its built structures had various urban roofs influenced by different climate circumstances. That creates peculiarities and changes within the urban local climate and an increase in the impact of urban heat islands (UHI) with wastage of energy. The research question is less information dealing with the renovation of existing urban roofs using color as a strategy to mitigate the impact of UHI. In order to achieve local urban sustainability; the research focused on solutions using different materials and treatments to reduce urban surface heating emissions. The results showed that the new and old technologies, produ
... Show MoreThis study introduced the effect of using magnetic abrasive finishing method (MAF) for finishing flat surfaces. The results of experiment allow considering the MAF method as a perspective for finishing flat surfaces, forming optimum physical mechanical properties of surfaces layer, removing the defective layers and decreasing the height of micro irregularities. Study the characteristics which permit judgment parameters of surface quality after MAF method then comparative with grinding
The role of residues in the adsorption process for removing contaminants from their aqueous solution was highlighted in this study. The adsorption capacity of eggshells were used to remove the methyl orange dye from its aqueous solution. The highest dye adsorption was found to range between (62.30% to 62.33%). The results of using adsorption isotherms (Freundlich, Langmuir, and Temkin) have been revealed that the Freundlich model was followed and that the Langmuir model did not match, as well as the partial applicability of Temkin's model at temperatures (298,308,318) K. The process of adsorption is a physical one. Three kinetic models of the adsorption process were also used, with the results demonstrating the applicability of the pseud
... Show More