The primary objective of this study was to identify the mechanisms for the development and propagation of longitudinal cracks that initiate at the surface of composite pavement. In this study the finite element program ANSYS version (5.4) was used and the model worked out using this program has the ability to analyze a composite pavement structure of different layer properties. Also, the aim of this study was modeling and analyzing of the composite pavement structure with the physical presence of crack induced in concrete underlying layer. The results obtained indicates that increasing the thickness of the asphalt layer tends to decrease the stress intensity factor, which may be attributed to the rapidly decrease of horizontal tensile stress in the asphalt layer. The cracks initiate at the surface due to high vertical stress and shear stress from wheel loads tends to propagate downward due tensile stress generated at the bottom of the asphalt layer or near crack tip, and the whole process occur at the same location of the existing cracks in underlying concrete layer rather than travel up from existing crack. As the load position varies from the crack zone, this result in tensile stresses or tension at the crack tip, leading to increase the stress intensity factor and intern result in crack propagation further into the depth of the pavement.
Re-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c
Background: Many studies have been conducted to evaluate the effect of using a hot material in the root canal and its potential for causing damage to the tooth supporting structure. Materials and methods: thirty permanent premolars were obturated with thermoplasticized Gutta-Percha using three different obturation techniques: soft core, Thermafil, and obtura to evaluate the rise in temperature on the root surface using a multipurpose digital thermometer. Results: temperature increases was significantly greater for Obtura versus Soft core (p<0.003), not significant for Thermafil versus Soft core (p<0.087), and Thermafil versus Obtura (p<0.125). Conclusions: temperatures rise on the root surface were below the critical level and, therefore, s
... Show MoreThis study was conducted on Lake Hamrin situated in Diyala governorate, focal Iraq, between latitudes 44º 53ʹ 26.16 '- 45º 07 ʹ 28.03ʺ and 34º 04ʹ 24.75ʺ ــ 34º 19ʹ 12.74ʺ . As in this study, the surface area of Hamrin Lake was calculated from satellite images during the period from October 2019 to September 2020, with an average satellite image for each month, furthermore,by utilizing the Normalized Differences Water Index (NDWI), the largest surface area was 264,617 km2 for October and the lowest surface area 140.202 km2 for September. The surface temperature of the lake water was also calculated from satellite images of the Landsat 8 satellite, based on ban
... Show MoreIn the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreBackground. Material tribology has widely expanded in scope and depth and is extended from the mechanical field to the biomedical field. The present study aimed to characterize the nanocoating of highly pure (99.9%) niobium (Nb), tantalum (Ta), and vanadium (V) deposited on 316L stainless steel (SS) substrates which considered the most widely used alloys in the manufacturing of SS orthodontic components. To date, the coating of SS orthodontic archwires with Nb, Ta, and V using a plasma sputtering method has never been reported. Nanodeposition was performed using a DC plasma sputtering system with three different sputtering times (1, 2, and 3 hours). Results. Structural and elemental analyses were conducted on the deposited coating
... Show MoreBackground : surface area anatomy is a proportional point to the retention of complete denture, in past there was no quantitative method to evaluate the surface area, nowadays the size and shape of maxillary arch is measured by different electronically and mathematical devices. A study was therefore, undertaken to measure surface area of upper dental cast that was taken by different final impressions. Materials and methods: twenty patients were examined. All of them had a healthy palate with no singe of injury, trauma, or deformity. Casts were taken by three different final impressions; zinc oxide, additional silicon, and poly ether. And two different devices were used; the computerized one and the Aluminum foil measure. Age, se
... Show MoreEbastine (EBS) is a non-sedating antihistamine with a long duration of action. This drug has predominantly hydrophobic property causing a low solubility and low bioavailability. Surface solid dispersions (SSD) is an effective technique for improving the solubility and dissolution rate of poorly soluble drugs by using hydrophilic water insoluble carriers.
The present study aims to enhance the solubility and dissolution rate of EBS by using surface solid dispersion technique. Avicel® PH101, Avicel® PH 102, croscarmellose sodium(CCS) and sodium starch glycolate(SSG) were used as water insoluble hydrophilic carriers.
The SSD formulations of EBS were prepared by the solvent evaporation method in different drug: carrier
... Show More