The primary objective of this study was to identify the mechanisms for the development and propagation of longitudinal cracks that initiate at the surface of composite pavement. In this study the finite element program ANSYS version (5.4) was used and the model worked out using this program has the ability to analyze a composite pavement structure of different layer properties. Also, the aim of this study was modeling and analyzing of the composite pavement structure with the physical presence of crack induced in concrete underlying layer. The results obtained indicates that increasing the thickness of the asphalt layer tends to decrease the stress intensity factor, which may be attributed to the rapidly decrease of horizontal tensile stress in the asphalt layer. The cracks initiate at the surface due to high vertical stress and shear stress from wheel loads tends to propagate downward due tensile stress generated at the bottom of the asphalt layer or near crack tip, and the whole process occur at the same location of the existing cracks in underlying concrete layer rather than travel up from existing crack. As the load position varies from the crack zone, this result in tensile stresses or tension at the crack tip, leading to increase the stress intensity factor and intern result in crack propagation further into the depth of the pavement.
Objective: To enhance bonding strength between thermoplastic denture base and acrylic soft liner through ethyl acetate surface treatment. Materials and Methods: Modifications of thermoplastic acrylic denture base surface were investigated with SEM. FTIR was used to detect whether there was a chemical bond between thermoplastic acrylic and the organic solvent. A total of 80 samples were prepared and divided into 20 samples for the surface roughness test and 60 samples for the shear bond strength test. Failure type was assessed visually. Results: Shear bond strength and surface roughness values of un treated samples were lower in comparison to surface treated groups; the greatest post thermocycling bond strength value was recorded for the sam
... Show MoreAntibiotic resistance is the major growing threat facing the pharmacological treatment of bacterial infections. Therefore, bioprospecting the medicinal plants could provide potential sources for antimicrobial agents. Mimusops, the biggest and widely distributed plant genus of family Sapotaceae, is used in traditional medicines due to its promising pharmacological activities. This study was conducted to elucidate the antimicrobial effect of three unexplored Mimusops spp. (M. kummel, M. laurifolia and M. zeyheri). Furthermore, the mechanisms underlying such antibacterial activity were studied. The Mimusops leaf extracts revealed significant antibacterial activities against the five tested bacter
... Show MoreObjectives To tailor composites of polyethylene–hydroxyapatite to function as a new intracanal post for the restoration of endodontically treated teeth (ETT). Methods Silanated hydroxyapatite (HA) and zirconium dioxide (ZrO2) filled low-density polyethylene (LDPE) composites were fabricated by a melt extrusion process and characterised using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The flexural strength and modulus were determined in dry state and post ageing in simulated body fluid and fractured surfaces analysed by SEM. The water uptake and radiographic appearance of the experimental composites were also measured and compared with a commercially known endodontic fibre
... Show MoreIn this work, an enhanced Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) sensor using a sided polished structure for the detection of toxic ions Arsenic in water was designed and implemented. The SPR curve can be obtained by polishing the side of the PCF after coating the Au film on the side of the polished area, the SPR curve can be obtained. The proposed sensor has a clear SPR effect, according to the findings of the experiments. The estimated signal to Noise Ratio (SNR), sensitivity (S), resolution (R), and Figures of merit (FOM) are approaching; the SNR is 0.0125, S is 11.11 μm/RIU, the resolution is 1.8x〖10〗^(-4), and the FOM is 13.88 for Single-mode Fiber- Photonic Crystal Fiber- single mode Fiber (SMF-P
... Show MoreThe aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4. The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determinatio
... Show MoreLaser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution) as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge) was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with
... Show More